期刊文献+

时间分数阶色散方程的高阶差分方法 被引量:1

High Order Finite Difference Method for the Time Fractional Dispersive Equation
下载PDF
导出
摘要 时间分数阶色散方程用以描述带有记忆性的色散现象。本文研究分数阶色散方程的高精度差分方法,利用紧致差分格式的构造技巧,得到了求解时间分数阶色散方程的四点四阶和五点六阶2个紧致隐式差分格式,收敛阶分别为O(τ2+h4)和O(τ2+h6).数值算例表明本文方法是高精度有效的,且具有很好的数值稳定性。 The time fractional dispersive equation is used to model the phenomena of dispersions with memory. By using the techniques of compact schemes, fourth-order four-point stencil and sixth-order fivepoint stencil compact implicit difference schemes were derived for the time fractional dispersive equation. It was shown that the convergence rate of the two compact implicit difference schemes were O(τ^2 -h^4) and O(τ^2+h^6),respectively. The numerical experiments show that the present compact schemes are effective and with high accuracy.
作者 谢树森 王辉
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第10期119-122,共4页 Periodical of Ocean University of China
关键词 分数阶色散方程 紧致差分格式 高精度 fractional dispersive equation compact difference scheme high-accuracy
  • 相关文献

参考文献7

  • 1Podlubny Igor. Fractional Differential Equations [M]. New York: Academic Press, 1999.
  • 2Chen Changming, Liu F, Burrage K. Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation [J]. Applied Mathematics and Computation,2008, 198: 754-769.
  • 3金承日,潘有思.时间分数阶色散方程的有限差分方法[J].黑龙江大学学报:自然科学版,2011,28(3):291-294.
  • 4王文洽.色散方程的一类新的并行交替分段隐格式[J].计算数学,2005,27(2):129-140. 被引量:21
  • 5Zhu Shaohong, Zhao Jennifer. The alternating segment explicit implicit scheme for the dispersive equation [J].Applied Mathemat ics Letters ,2001, 14(6): 657-662.
  • 6Zhang Qingjie, Wang Wenqia. A four-order alternating segment Crank Nicolson scheme for the dispersive equation [J]. Computers and Mathematics with Applications, 2009, 57 (2) : 283-289.
  • 7Jiang Yingjun, Ma Jingtang. High order finite element methods for time-fractional partial differential equations[J]. Journal of compu rational and Applied Mathematics, 2011, 235(11):3285-3290.

二级参考文献5

共引文献20

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部