期刊文献+

弹道坐标中三维鲁棒非线性导引律 被引量:5

Three-dimensional robust nonlinear guidance law in trajectory coordinates
下载PDF
导出
摘要 本文针对机动目标拦截问题,考虑导弹控制系统动态特性及其不确定性,利用分块反步设计思想,结合输入–状态稳定性理论,在弹道坐标系中设计了一种三维非线性鲁棒导引律.与大多数已有的导引律相比,本文直接地在弹道坐标系中设计导引律,并且所设计的导引律可有效克服控制系统动态特性和不确定性对制导效果的影响,理论分析和数值仿真表明,本文设计的导引律对目标机动和控制系统所受的外来有界扰动均具有较强的鲁棒性. Considering the autopilot dynamics and uncertainties, we, on the basis of the block backstepping method and input-to-state stability theory, propose in trajectory coordinates a three-dimensional nonlinear guidance law for intercepting a maneuvering target. Being distinguished from other existing methods, this guidance law is directly designed in trajectory coordinates; it can compensate for the effects of the autopilot dynamics and uncertainties. The simulation results show that our scheme has strong robustness with respect to target maneuvers and bounded disturbances in the control loop.
作者 严晗 季海波
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第9期1079-1085,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(61273090) 中国科学技术大学研究生科技创新与社会实践专项资助项目
关键词 机动目标 控制系统 不确定性 分块反步设计 输入-状态稳定性 鲁棒性 maneuvering targets control loop uncertainties block backstepping input-to-state stability robustness
  • 相关文献

参考文献16

  • 1YANG C D, YANG C C. A unified approach to proportional navi- gation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 557 - 567.
  • 2YANG C D, CHEN H Y. Nonlinear Hoo robust guidance law for homing missiles [J]. Journal of Guidance, Control, Dynamics, 1998, 21(6): 882 - 890.
  • 3ZHOU D, MU C, XU W. Adaptive sliding-mode guidance of a hom- ing missile [J]. Journal of Guidance, Control, Dynamics, 1999, 22(4): 589 - 594.
  • 4SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Smooth second- order sliding modes: Missile guidance application [J]. Automatica, 2007, 43(8): 1470 - 1476.
  • 5SUN S, ZHOU D. A guidance law with finite time convergence ac- counting for autopilot lag [J]. Aerospace Science and Technology, 2013, 25(1): 132 - 137.
  • 6ZHOU D, SUN S. Guidance laws with finite time convergence [J]. Journal of Guidance, Control, Dynamics, 2009, 32(6): 1838 - 1842.
  • 7BEZICK S, RUSNAK I, GRAY W S. Guidance of a homing missile via nonlinear geometric control methods [J]. Journal of Guidance, Control, and Dynamics, 1995, 18(3): 441 - 448.
  • 8YAN H, JI H. Guidance laws based on input-to-state stability and high-gain observers [J]. IEEE Transactions on Aerospace and Elec- tronic Systems, 2012, 48(3): 2518 - 2529.
  • 9孙胜,周荻.考虑导弹自动驾驶仪动特性的三维非线性导引律[J].宇航学报,2009,30(3):1052-1056. 被引量:20
  • 10CHWA D, CHOI J Y. Adaptive nonlinear guidance law considering control loop dynamics [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1134 - 1143.

二级参考文献25

共引文献20

同被引文献55

  • 1司玉洁,熊华,宋勋,宗睿.三维自适应终端滑模协同制导律[J].航空学报,2020(S01):99-109. 被引量:14
  • 2周慧波,宋申民,刘海坤.具有攻击角约束的非奇异终端滑模导引律设计[J].中国惯性技术学报,2014,12(5):606-611. 被引量:22
  • 3佘文学,周凤岐.三维非线性变结构寻的制导律[J].宇航学报,2004,25(6):681-685. 被引量:37
  • 4周狄.寻的导弹新型导引规律[M].北京:国防工业出版社.2002:8-14.
  • 5刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社.2012.
  • 6孙胜.有限时间收敛寻的导引律[D].哈尔滨:哈尔滨工业大学.2010.
  • 7Gutman S. Applied min-max approach to missile guidance and control [ R]. AIAA: Progress in Astronautics and Aeronautics, Vol. 209, 2005.
  • 8Shneydor N A. Missile guidance and pursuit: kinematics, dynamics and control [ M ]. Cambridge: Wood Publishing Limited. 1998.
  • 9Yang C D, Yang C C. A Unified approach to proportional navigation [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 557-567.
  • 10Tyan F. Unified approach to missile guidance laws a 3D extension [ J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4) :1178 - 1199.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部