期刊文献+

应用人工鱼群算法的重叠社区检测 被引量:1

Application of artificial fish-school algorithm in overlapping community detection
下载PDF
导出
摘要 随着小企业大数据现象的涌现,复杂网络作为复杂系统的建模已很普遍,其中的社区检测是最重要的问题之一。大部分已有的社区检测算法是在社区不重叠情况下进行的,针对现实世界中重叠社区普通存在的现象,提出了一种基于人工鱼群算法的重叠社区检测算法—AFSCDA,初始种群时用标签传播算法对每条人工鱼的寻优变量编码进行调整,避免了非法社区的产生,用模块度Q函数的变形作为适应度函数,来衡量划分的重叠社区质量。在三种经典的已知社区结构的数据集上的测试表明,该算法不仅有效,而且有较高的准确率,能够快速地检测出网络中潜在的社区结构。 With the phenomenon of small business big data emerged,"complex networks as complex system model" has been very popular.Community detection is one of the most important issues.But the existing community detection algorithms mostly assume that no overlaps exist.Aimed at the common phenomenon of overlapping community,an overlapping community detection algorithm,named AFSCDA,is proposed based on fish-school algorithm.In the initialization phase,a label propagation algorithm is utilized on optimization variables of each artificial fish for coding adjustment,trying to avoid illegal community.We will apply the deformation module of the Q function as the fitness function.In experiments,the algorithm is applied to three classic datasets with known community structures in order to demonstrate the algorithm's effectiveness,higher accuracy,capability of detecting the potential community structure quickly in networks.
作者 王一萍 孙明
出处 《计算机工程与科学》 CSCD 北大核心 2013年第10期131-136,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61100103) 黑龙江省教育厅科学技术研究项目(12531758)
关键词 社区结构 人工鱼群算法 标签传播 模块度 community structure artificial fish-school algorithm label propagation modularity
  • 相关文献

参考文献2

二级参考文献7

  • 1戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 2WILSON S. The animat path to AI[A]. Proceedings of the First International Conference on the Simulation of Adaptive Behavior[C]. Cambridge: MIT Press, 1991.
  • 3JEFFREY D. Animats and what they car tell us[J]. Trends in Cognitive Sciences, 1998,2(2): 60-67.
  • 4BONABEAU E, THERAULAZ G. Swarm smarts[J]. Scientific American, 2000,282(3) :72-79.
  • 5RAVINDA K, AHUJ A, OZLEM E, et al. A survey of very large-scale neighborhood search techniques[J]. Discrete Applied Mathematics, 2002,123(1~3): 75-102.
  • 6李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:883
  • 7李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究[J].电路与系统学报,2003,8(1):1-6. 被引量:137

共引文献946

同被引文献6

  • 1Girvan M, Newman M E J. Community structure in social and biological networks[J]. PNAS, 2001, 99 ( 12 ): 821-826.
  • 2Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69 ( 6 ): 066133.
  • 3Palla G, Derenyi I, Farkas I, et al. Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society[J]. Nature, 2005, 435:814-818.
  • 4Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69( 2 ): 026113.
  • 5Clauset A, Newman M E J, Moore C. Finding community structure in very large networks[J]. Phys Rev E, 2004, 70:066111.
  • 6Eberhart R C, Kennedy J. A new optimizer using particles swarm theory[C]//Proc Sixth International Symposium on Micro Machine and HumanSeience, Nagoya: [s.n.], 1995:87-92.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部