期刊文献+

不含L连续数组的排列计数问题的研究

A Study on the Enumeration Problems of the Arrangements Excluding L-consecutive Arrays
下载PDF
导出
摘要 [1]中定义了不含连续数对的排列并用容斥原理给出了它的计数公式.本文由此问题出发定义了由1,2,3,…,n作成的不含L(L≥3)连续数组的全排列,引入算子(·,·),通过运算(·,·)可以由不含连续数对的排列构造得到不含L(L≥3)连续数组的排列,综合利用乘法原则、加法原则和数学归纳法求得了由1,2,3,…,n作成的不含L连续数组的全排列的计数公式. The arrangement excluding successive arrays is presented in [ 1 ]. And its enumerating formular is obtained by using Inclusion-Exclusion Principle. In this paper, the arrangements which do not contain L- consecutive (L≥3) arrays are defined. Firstly, an operator О(.,.) is introduced. Then an arrangment not containing L -consecutive arrays can be obtained from an arrangement excluding successive arrays by this operator. Lastly, by using the multiplication principle, addition principle and combining the principle of mathematical induction, the enumerating formulars for the arrangments not excluding L -consecutive arrays are obtained.
出处 《广东技术师范学院学报》 2013年第7期8-11,共4页 Journal of Guangdong Polytechnic Normal University
基金 广东高校优秀青年创新人才培养计划项目(2012LYM_0087)
关键词 连续数组 排列 算子 L-Continuous arrays arrangement operator
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部