期刊文献+

基于有监督学习的应用识别研究

The Research on Application Identification Based on Supervised Learning
下载PDF
导出
摘要 网络应用识别是网络管理、研究、规划、安全等一系列事务的基本前提,基于分组端口号和分组载荷的应用识别技术逐渐不能满足需求.根据不同应用具有各不相同的流量特性这一原理,可利用机器学习技术挖掘各种应用的流量模式,从而进行有效识别.本文使用简单的流量特征作为观测值进行有监督应用识别.通过比较多种通用的机器学习算法,找出最适用于应用识别问题的有监督学习方案,同时应用特征选择算法找出关键的流量特征. Application identification plays an important role in various network activities. Due to the ineffec- tiveness of traditional port-based and payload-based methods, recent works proposed using machine learning tech- niques to identify application based on statistical characteristic of traffic flows. In this study, we use simple charac- teristic to describe traffic flows, and then identify the most suitable supervised ML classifier for the application i- dentification problem by comparing various ML schemes. We also apply feature selection to identify the most sig- nificant features.
作者 蔡君 王宇
出处 《广东技术师范学院学报》 2013年第7期93-98,共6页 Journal of Guangdong Polytechnic Normal University
基金 国家自然科学基金资助项目(61202271 61272381) 国家自然科学基金-广东联合基金重点项目(U0735002)资助的课题 国家高技术研究发展计划("863"计划)基金资助项目(2007AA01Z449) 广东省自然科学基金资助项目(S2012040007184)
关键词 应用识别 网络流量 机器学习 有监督分类 特征选择 intemet traffic, application identification, machine learning, supervised classification, feature se- lection
  • 相关文献

参考文献27

  • 1Snort[EB/OL], http://www.snort.org, as of Jan 15, 2009.
  • 2Bro intrusion detection system[EB/OL], http://bro-ids.org, as of Jan 15, 2009.
  • 3IANA[EB/OL], http://www.iana.org, as of Jan 15, 2009.
  • 4T. Karagiannis, A. Broido et al. Is P2P dying or just hiding [C].Global Telecommunications Conference, 2004, vo13: 1532-1538.
  • 5S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in network identification of P2P traffic using application signa- tures[C]. Proceedings of the 13th international conference on WWW, 2004, 512-521.
  • 6A. Moore and K. Papagiannaki. Toward the accurate identi- fication of network applications [C]. Proceedings of the Pas- sive and Active Measurement Workshop, 2005, Vol.3431: 41-54.
  • 7LT-filter [EB/OL], http://17-filter.sourceforge.net, as of Jan 15, 2009.
  • 8P. Haffner, S. Sen, O. Spatscheck et al. ACAS: automated construction of application signatures[C]. Proceedings of the 2005 ACM SIGCOMM workshop on Mining network data,2005, 197-202.
  • 9刘兴彬,杨建华,谢高岗,胡玥.基于Apriori算法的流量识别特征自动提取方法[J].通信学报,2008,29(12):51-59. 被引量:39
  • 10A. McGregor, M. Hall, P. Lorier et al. Flow clustering us- ing machine learning techniques[C]. Proceedings of the Pas- sive and Active Measurement Workshop, 2004, Vol.3015: 205-214.

二级参考文献34

  • 1李江涛,姜永玲.P2P流量识别与管理技术[J].电信科学,2005,21(3):57-61. 被引量:43
  • 2金婷,王攀,张顺颐,陆青莲,陈东.基于DPI和会话关联技术的QQ语音业务识别模型和算法[J].重庆邮电学院学报(自然科学版),2006,18(6):789-792. 被引量:10
  • 3THOMAS K, ANDRE B, NEVIL B. File-sharing in the Intemet: a Characterization of P2P Traffic in the Backbone[R]. UC, Riverside, 2003.
  • 4SUBHABRATA S, OLIVER S, WANG D M. Accurate, scalable in network identification of P2P traffic using application signatures[A]. International World Wide Web Conference[C]. New York,2004.
  • 5KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: multilevel tratfic classification in the dark[A]. Proc of ACM SIGCOMM[C]. Philadelphia, PA, 2005.
  • 6KARAGIANNIS T, BROIDO A, FALOUTSOS M. Transport layer identification of P2P traffic[A]. Proc of ACM SIGCOMM IMC[C]. Taormina, Sicily, Italy, 2004.
  • 7ZANDER S, NGUYENI T, ARMITAGEI G.Self-learning IP traffic classification based on statistical flow characteristics[A]. Proc of PAM[C]. Boston, MA, 2005.
  • 8ZUEV D, MOORE A W. Traffic classification using a statistical approach[A]. Proc of PAM[C]. Boston, 2005.
  • 9HERN E NOBEL A B, SMITH F D. Statistical clustering of intemet communication patterns[A]. Proceedings of the 35th Symposium on the Interface of Computing Science and Statistics, Computing Science and Statistics[C]. 2003.
  • 10MOORE A W, ZUEV D. Discriminators for Use in Flow-Based Classification[R]. Intel Research, Cambridge, 2005.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部