期刊文献+

深成指数时间序列的网络拓扑结构研究 被引量:1

Network Topology of Shenzhen Component Index Time Series
下载PDF
导出
摘要 以2000年~2010年中国股市深圳成指的收盘价数据为依据,利用可见图方法将指数时间序列转化为复杂网络,计算和分析了复杂网络的拓扑结构指标,发现该网络具有典型的小世界特征、无标度特征和自相似性,并针对网络所呈现的特征进行了深入解释.研究发现,将金融时间序列转化为复杂网络能够从一个新的视角揭示金融系统复杂性及其内在的结构规律,为预测金融市场提供了新的思路. Based on the closing price data of Shenzhen Component Index in Chinese stock market from 2000 to 2010, it turned the component index time series into complex networks by the visible diagram method, calculates, analyzed these complex networks' topological structure index, and found that these networks have the typical network characteristics of a small world and self-similarity, being scale-free. Finally, it gave an explanation in detail of this phenomenon. The study finds that a new perspective to ex- plore the complexity of the financial system and its internal structure can be acquired by turning the finan- cial time series into complex networks, which provides a new way of thinking to predict financial markets.
出处 《广东工业大学学报》 CAS 2013年第3期75-79,共5页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(71103044) 广东省普通高校人文社会科学研究基地重大项目(10JDXM63005)
关键词 股票市场 时间序列数据 复杂网络 分形特征 stock market time series data complex network fractal characteristic
  • 相关文献

参考文献4

二级参考文献46

  • 1李平,汪秉宏.证券指数的网络动力学模型[J].系统工程,2006,24(3):73-77. 被引量:13
  • 2Mandelbrot B B.How long is the coast of Britain?Statistical self similarity and fractional dimension[J].Science, 1967,155:636-638.
  • 3Mandelbrot B B.Fractals,form,chance and dimension[M].San Francisco:W H Freeman & Co,1997.
  • 4Mandelbrot B B.The fractal geometry of nature[M].San Francisco: Freeman, 1982.
  • 5Barabasi A L.Linked:The new science of networks[M].Massachusetts: Persus Publishing, 2002.
  • 6Watts D J.The 'new' science of networks[J].Annual Review of Sociology, 2004,30: 243-270.
  • 7Watts D J,Strogatz S H.Collective dynamic of small world network[J]. Nature, 1998,393 : 440-442.
  • 8Barabasi A L,Albert R.Emergence of scaling in network[J].Science, 1999,286: 509-512.
  • 9Wang X F,Li X,Chen G R.Complex network:Theories and application[M].Beijing:Tsinghua University Press,2006.
  • 10Song Chao-ming,Havlin S,Makse H A.Self-similarity of complex networks[J].Nature, 2005,433 : 392-395.

共引文献24

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部