期刊文献+

改性蒙脱石吸附降解硝酸根离子的研究 被引量:9

STUDY OF USING MODIFIED SMECTITE TO ADSORB AND DEGRADE NITRATE
原文传递
导出
摘要 水体中硝酸根离子可以导致人体患多种疾病,并且引起一系列的环境问题,因此仍然需要对硝酸根离子去除方法进行研究。本研究的目的是评价含铁粘土矿物去除水体中硝酸根离子的能力。实验所用粘土矿物为含铁蒙脱石,采自美国华盛顿州Grant county。利用聚二烯丙基二甲基氯化铵交换蒙脱石层间阳离子得到改性蒙脱石,化学方法还原蒙脱石结构三价铁离子至结构二价亚铁离子,测定了不同氧化态的未改性蒙脱石吸附降解硝酸根离子的能力,氧化态改性蒙脱石在不同带电条件下吸附硝酸根离子的水平,还原态改性蒙脱石降解硝酸根离子的能力,采用ζ电位测定,X射线衍射(XRD),傅氏转换红外线光谱(FTIR)和扫描电子显微镜(SEM)分析表征改性蒙脱石特性。实验结果表明:氧化态未改性蒙脱石几乎不能吸附与还原降解硝酸根离子;还原态未改性蒙脱石可以吸附大约0.0054mmole/g的硝酸根离子,产生极少量的低价态硝族产物,这种阻滞是由于电负性未改性蒙脱石与电负性硝酸根离子之间存在库仑斥力。蒙脱石改性后由电负性转变为电正性,原有库仑斥力得以消除,氧化态改性蒙脱石能够吸附高达0.23mmole/g的硝酸根离子,其吸附能力随着层间聚合阳离子浓度的增大而升高;还原态改性蒙脱石还原降解硝酸根离子的能力较未改性蒙脱石提高了13至39倍。结合还原态改性蒙脱石结构二价亚铁再氧化的趋势,探讨了电子的转移方式以及多种可能的降解产物。 Research carries out to use polydiallyldimethylammonium chloride to intercalate into the interlayer of smectite and exchange with cations, g-potential, XRD, FTIR and SEM was uti- lized for experiment measurement. The capacity of nitrate absorbed and reduced was measured be- fore and after smectite modified in different oxidation state. It showed thatξ-potential of modified smectite converted from negative to positive, polymer cations intercalated into the interlayer of smectite successfully, and R-NH3 + was reacted with smectite. The surface of smectite significant- ly changed after modification and the nature smectite cannot adsorb or reduce nitrate. Modified smectite can enhance nitrate adsorption to 0. 0054 mmole/g, reduced and modified smectite en- hances the capacity of nitrate reduction from 13 to 39 times, and the structural ferrous ion oxidized accordingly. This research may inspire a new research trend in the field of nitrate pollution treat- ment.
出处 《矿物岩石》 CAS CSCD 北大核心 2013年第3期7-12,共6页 Mineralogy and Petrology
基金 国家自然科学基金项目(41272322) 教育部新世纪优秀人才支持计划项目(NCET-11-0710) 中央高校基本科研业务费专项资金(SWJTU12CX003)
关键词 蒙脱石 聚二烯丙基二甲基氯化铵 硝酸根离子 结构亚铁 smectite polydiallyldimethylammonium chloride Nitrate structural Ferrous Iron
  • 相关文献

参考文献10

  • 1Camargo J A, Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems:A global assessment[J]. Environment International, 2006,32 (6) : 831-849.
  • 2Westerhoff P. Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe- 0)[J]. Journal of Environmental Engineering-Asce, 2003, 129(1) :10-16.
  • 3Ottley C J, Davison W, Edmunds W M. Chemical catalysis of nitrate reduction by iron( Ⅱ )[J]. Geochimica Et Cosmochimica Aeta, 1997,61 (9):1 819-1 828.
  • 4Ernstsen V,Gates W P,Stucki J W. Microbial reduction of structural iron in clays A renewable source of reduction capacity[J]. Journal of Environmental Quality, 1998,27(4) : 761-766.
  • 5Hansen H C B, Guldberg S, Erbs M, et al. Kinetics of nitrate reduction by green rusts-effects of interlayer anion and Fe( Ⅱ ) :Fe( Ⅲ ) ratio [J]. Applied Clay Science,2001,18(1-2) :81-91.
  • 6Hofstetter T B,Schwarzenbach R P, Haderlein,S B. Reactivity of Fe( Ⅱ ) species associated with clay minerals[J]. Environmental Science & Technology,2003;37(3) ..519-528.
  • 7Claesson P M, Poptoshev E, Blomberg E, et al. Polyelectrolyte-mediated surface interactions[J]. Advances in Colloid and Interface Science, 2005,114: 173-187.
  • 8Stucki J W. The quantitative assay of minerals for Fe^2+ and Fe^3+ using 1,10-phenanthroline . 2. a photochemical method[J]. Soil Science Society of America Journal,1981,45(3) :638-641.
  • 9Stucki J W,Pentrak M, Su K, et al. Controlled atmosphere methods for redox-activated smectites[J]. Clay Minerals, 2013,48, (submit- ted).
  • 10Khan S A,Mulvaney R L, Mulvaney C S. Accelerated diffusion methods for inorganic-nitrogen analysis of soil extracts and water[J]. Soil Science Society of America Journal,1997,61(3) :936-942.

同被引文献127

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部