期刊文献+

基于外场实验的风力机叶片三维效应研究 被引量:6

Investigation of Three-Dimensional Effect on Blades of a Wind Turbine Based on Field Experiments
下载PDF
导出
摘要 针对一台33 kW水平轴风电机组开展了外场实验,得到其叶片7个断面翼型的压力分布曲线;基于求解时均N-S方程对风轮进行三维数值模拟,以及将叶片各断面作为二维翼型进行数值计算,分别得到各断面翼型的压力分布曲线及升阻力系数.通过将外场实验、三维和二维数值计算所得压力分布曲线及升阻力系数进行对比分析,研究了三维效应对风力机气动性能的影响.研究表明,从叶尖到叶根各断面翼型的压差先增大后逐渐减小,叶片表面压力分布曲线比较明显地反映了从叶尖到叶根流动分离的变化;叶片表面压力分布的三维数值计算结果较二维计算结果更加接近于外场实验值;风力机叶片表面的三维流动对叶片的气动性能影响较大,在叶尖和叶根部分尤为突出. Field experiments were performed on a 33 kW horizontal axis wind turbine. The curves of pressure distribution were gathered by 191 pressure sensors disposed span-ward on 7 particular sections of a blade. Then, the 3D numerical simulation of the wind turbine and 2D numerical simulation of the 7 airfoils were performed in comparison with the field experiment results, and the lift and drag coefficients of the 7 airfoils were also obtained for 3D and 2D. The investigation was performed for the turbine aerodynamic characteristics under the 3D effects. At last, conclusions were drawn. The pressure difference of the airfoils first increases and then de- creases from the blade tip to the blade root, and the curves of the pressure distribution show the characteristics of flow separation on the blade obviously. The 3D results of pressure on the 7 airfoils are more consistent with the experiments than 2D. There is a more violent 3D flow on the blade surface, especially at the blade tip and the blade root.
出处 《应用数学和力学》 CSCD 北大核心 2013年第10期1073-1082,共10页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展计划(973计划)资助项目(2014CB046201) 国家自然科学基金资助项目(51166009)~~
关键词 水平轴风力机(HAWT) 外场实验 风力机叶片 三维效应 horizontal axis wind turbine (HAWT) field experiment blade of wind turbine three-dimensional effect
  • 相关文献

参考文献21

  • 1Simms D, Schreck S, Hand M, Fingersh L J. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements [ R ]. Colorado: Na-tional Renewable Energy Laboratory, 2001.
  • 2Schepers J G, Brand A J, Bruining A, Graham J M R, Hand M M, Infield D G, Madsen H A, Paynter R J H, Simms D A. Final report of IEA annex XIV: field rotor aerodynamics [ R]. ECN-C-97-027, 1997.
  • 3Schepers J G, Brand A J, Bruining A, Graham J M R, Hand M M, Infield D G, Madsen H A, Maeda T, Paynter J H, Van Rooij R, Shimizu Y, Simms D A, Stefanatos N. Final report of IEA annex XVIII: enhanced field rotor aerodynamics database[ R]. ECN-C-02-016, 2002.
  • 4Barthelmie R J, Larsen G C, Frandsen S T, Folkerts L, Rados K, Pryor S C, Lange B, Schepers G. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. Journal of Atmospheric and Oceanic Technology, 2005, 23(7) : 888- 901.
  • 5Helge A M, Christian B, Uwe S P, Mac G, Peter F, Jonas R, Niels A O, Peder E, Jesper L, Leo J. The DAN-AERO MW experiments fmal report[R]. DTU, Riso-R-1725(EN), 2010.
  • 6Spentzos A, Barakos G, Badcock K, Richards B, Wernert P, Schreck S, Raffel M. CFD in- vestigation of 2D and 3D dynamic stall[ C]//The AHS 4th Decennial Specialist' s Conference on Aeromechanics , 2004-1-21-23.
  • 7Ekaternaris J A, Platzer M F. Computational prediction of airfoil dynamic stall aerospace sci- ence[J]. Progress in Aerospace Sciences, 1998, 33(11) : 759-845.
  • 8Narramoroe J C, Vermeland R. Navier-Stokes calculations of inboard stall delay due to rota- tion[J]. Journal of Aircraft, 1992, 29( 1 ) : 73-78.
  • 9Wood D H. A three-dimensional analysis of stall-delay on a horizontal axis wind turbine [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 1991, 37( 1 ) : 1-14.
  • 10Duque E P N, Van Dam C P, Hughes S C. Navier-Stokes simulations of the NREL combined experiment phase II rotor[ C ]//37th Aerospace Sciences Meeting and Exhibit, 1999.

二级参考文献73

  • 1李栋,焦予秦,Igor Men’shov,中村佳朗.Detached Eddy Simulation方法模拟不同类型翼型的失速特性[J].航空学报,2005,26(4):406-410. 被引量:9
  • 2Guilmineau E, Piquet J, Queutry P. Two-dimensional turbulent viscous flow simulation past airfoils at fixed incidence[ J]. Computers & Fluides, 1997,26(2): 135 - 140.
  • 3Nathan L. A procedure for numerically analysing airfoils and wing sections[ D]. Missouri: University of Missouri-Colombia, 2006.
  • 4Christopher P S, Stephanie M T, Earl P N D. Computational fluid dynamics of fiat-back airfoils for wind turbine applications [ C]. 44th Aerospace Sciences Meeting and Exhib.it. AIAA Paper AIAA - 2006 - 0194,2006.
  • 5Strelets M. Detached eddy simulation of massively separated flows[ C]. 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper AIAA - 2001 - 0879, 2001.
  • 6Xiong Jun, Ling Guocan, Zhu Keqin. Effects of spanwise characteristic length on the transition feature in the wake of a cylinder[ J ]. Chinese Journal of Aeronautic, 2003,16 (2) :66 - 68.
  • 7Timmer W A, Vanrooij R P J O M. Summary of the delft university wind turbine dedicated air-foils[ C]. 41st Aerospace Sciences Meeting. AIAA Paper AIAA - 2003 - 0352,2003.
  • 8李本立,宋宪耕,贺德馨,等.风力机机构动力学[M].北京:北京航空航天大学出版社.1999.
  • 9Schlichting H. Boundary-layer theory[M]. NewYork: McGraw-Hill, 1997.
  • 10Banks W H H, Gradd, G E. Delaying effect of rotation on laminar separation[J]. AIAA J,1963,1(4):941~942.

共引文献54

同被引文献41

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部