期刊文献+

混凝-超滤组合工艺运行优化研究 被引量:4

Optimization of Operating Conditions of Coagulation and Ultrafiltration Combined Process
原文传递
导出
摘要 采用混凝/浸没式超滤组合工艺对深圳某原水进行中试研究,从有机物去除和膜污染控制两方面对聚合氯化铝(PAC)投加量和膜池曝气强度进行了优化。结果表明,膜池气水比为12∶1,PAC投加量为0、3、4 mg/L时,Zeta电位绝对值逐渐减小,颗粒数和COD Mn去除效果增强,继续增加PAC投加量到5 mg/L,则Zeta电位绝对值增大,颗粒数和COD Mn去除效果变差。PAC投加量为4 mg/L,膜池气水比为(7.5∶1)、(9∶1)、(12∶1)时,Zeta电位绝对值逐渐减小,颗粒数和COD Mn去除效果逐渐增强,继续增大气水比到15∶1,则Zeta电位增大,颗粒数和COD Mn去除效果变差。PAC的投加和膜池曝气可减缓不可逆膜污染,增加PAC投加量可提高DOC去除率,降低单周期TMP增幅;提高曝气强度会降低DOC去除率,降低单周期TMP增幅。 The combined process of coagulation and immersed uhrafiltration was investigated for the optimization of polyaluminium chloride (PAC) dosage and aeration intensity based on the removal of organics and membrane fouling control. The results showed that the absolute value of Zeta potential de- creased, and the removal of particle counts and CODMn increased when the air-water ratio in membrane tank was 12 : 1, and PAC dosage was 0 mg/L, 3 mg/L and 4 mg/L respectively. The absolute value of Zeta potential increased, and the removal of particle counts and CODM. decreased when increasing PAC dosage to 5 mg/L. The absolute value of Zeta potential decreased, and the removal of particle counts and CODM, increased when PAC dosage was 4 mg/L, and the air-water ratio in membrane tank was 7.5 : 1, 9 : 1 and 12 : 1 respectively. The absolute value of Zeta potential increased, and the removal of particle counts and CODMn decreased when increasing the air-water ratio to 15 : 1. Addition of PAC and aeration in membrane tank were beneficial to slow down the irreversible membrane fouling. Increasing PAC dosage could improve the removal efficiency of DOC and reduce the amplitude in transmembrane pressure in a single cycle. Enhancing aeration intensity could reduce the removal efficiency of DOC and the amplitude in transmembrane pressure in a single cycle.
出处 《中国给水排水》 CAS CSCD 北大核心 2013年第20期49-52,共4页 China Water & Wastewater
基金 国家水体污染控制与治理科技重大专项(2009ZX07423-003) 广东省科技计划项目(2012B010500031) 深圳市科技研发资金基础研究计划项目(JC201105201234A)
关键词 混凝 超滤 聚合氯化铝投加量 曝气强度 coagulation ultrafiltration PAC dosage aeration intensity
  • 相关文献

参考文献9

二级参考文献28

  • 1李圭白,杨艳玲.超滤——第三代城市饮用水净化工艺的核心技术[J].供水技术,2007,1(1):1-3. 被引量:124
  • 2朱娜,董铁有.影响土壤电动力学修复技术的主要因素[J].江苏环境科技,2005,18(3):33-35. 被引量:9
  • 3刘文君,贺北平,张锡辉.生物预处理对受有机污染源水中胶体Zeta电位的影响研究[J].中国给水排水,1996,12(4):27-29. 被引量:35
  • 4范茂军,张东,傅金祥,乐林生,高乃云.粉末活性炭和超滤膜组合工艺深度处理黄浦江原水[J].沈阳建筑大学学报(自然科学版),2006,22(5):799-803. 被引量:13
  • 5American Water Works Assodation. AWWA Manual 53: Microfiltration and Ultrafiltration Membranes for Drinking Water. First edition. Denver: Glacier Publishing Services, Inc, 2005.
  • 6Atassi A, Dunn A. Design membrane system ancillary equipment: The real challenge to successful system implementatiorL AWWA conference, 2004.
  • 7Ratnayaka D D, Lee M F, Tiew K N, et al. Application of membrane technology to retrofit large-scale conventional water treatment plant in Singapore. IWA conference,2008.
  • 8Garcia-Aleman J, Mains K, Farr A. Integrating 80 MGD of membranes, ozone and biological pretreatment at Lakeview WTP. AWWA membrane technology conference, 2005.
  • 9Janson A,O'Toole G, Singh M, et al. A 273 000 ma/d immersed membrane system for surface water treatment pilot system results and fullscale system design. Seoul: IWA Specialised Conference on Water Environment-Membrane Technology, 2004.
  • 10LELAND M V,GWEN M Z.Effect of aqueous phase properties on clay particle Zeta potential and electro-osmotic permeability:implications for electro-kinetic soil remediation process[J].Journal of Hazardous Materials,1997(55):1-22.

共引文献117

同被引文献47

  • 1刘百仓,陈洁,梁英,张永丽,王争辉,马军.强化混凝超滤组合工艺对有机污染物去除效能的研究[J].给水排水,2011,37(S1):23-27. 被引量:4
  • 2郝瑞霞,曹可心,邓亦文.三维荧光光谱法表征污水中溶解性有机污染物[J].分析试验室,2007,26(10):41-44. 被引量:51
  • 3Peter-Varbanets M, Zurbragg C, Swartz C,et al. Decen- tralized systems for potable water and the potential of membrane technology [ J ]. Water Res,2009,43 (2) :245 - 265.
  • 4Peter-Varbanets M,Hammes F,Vital M,et al. Stabiliza- tion of flux during dead-end ultra-low pressure ultrafiltra- tion[ J]. Water Res,2010,44(12) :3607 - 3616.
  • 5Peter-Varbanets M, Margot J, Traber J, et al. Mecha- nisms of membrane fouling during ultra-low pressure ul- trafihration[ J ]. J Membr Sci, 2011,377 ( 1/2 ) : 42 - 53.
  • 6Ding A,Qu F,Liang H,et al. A novel integrated vertical membrane bioreactor (IVMBR) for removal of nitrogen from synthetic wastewater/domestic sewage [ J ]. Chem Eng J,2013,223:908 - 914.
  • 7Derlon N,Mimoso J,Klein T,et al. Presence of biofilms on ultrafiltration membrane surfaces increases the quality of permeate produced during ultra-low pressure gravity- driven membrane filtration [ J ]. Water Res, 2014,60 : 164 - 173.
  • 8Akhondi E, Wu B, Sun S, et al. Gravity-driven mem- brane filtration as pretreatment for seawater reverse os- mosis:Linking biofouling layer morphology with flux sta- bilization [ J]. Water Res ,2015,70 : 158 - 173.
  • 9Meng F,Zhang H,Li Y,et al. Cake layer morphology in microfiltration of activated sludge wastewater based on fractal analysis [ J ]. Sep Purif Technol, 2005,44 ( 3 ) : 250 - 257.
  • 10Lee H J, Laskin A, Laskin J,et al. Excitation - emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols [ J ]. Environ Sci Technol,2013,47( 11 ) :5763 -5770.

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部