期刊文献+

膜计算改进粒子群优化算法的云资源调度 被引量:8

Cloud resource scheduling based on improved particle swarm optimization algorithm bymembrane computing
下载PDF
导出
摘要 云计算环境下的资源合理调度是当前的研究热点,针对粒子群优化算法的不足,引入膜计算理论,提出一种基于膜计算改进粒子群优化算法的云资源调度算法(PSO—MC)。对云资源调度问题进行分析,建立云资源调度的目标函数,受到膜计算的启发,将粒子放入膜中,主膜内粒子进行精细化局部寻优,辅助膜内的粒子进行全局搜索,通过膜区域之间信息传递搜索结果,找到云资源调度问题的最优解,在CloudSim平台对算法进行仿真实验。结果表明,PSO—MC算法减少了任务的平均完成时间,提高了任务处理的效率,使云计算资源调度更加合理。 Resource scheduling in cloud computing environment is the current research focus, aiming at the shortage of tradi tional particle swarm optimization algorithm, it puts forward a cloud computing resource scheduling algorithm based on Particle Swarm Optimization algorithm and Membrane Computing theory (PSOMC). The cloud resource scheduling problem is ana lyzed to get the cloud resource scheduling objective function, and the membrane system is used as framework, the particles in main membrane are used to the local optimization while the particles in auxiliary membrane mainly used for global search, search results are transferred among different membrane areas to find the cloud resource scheduling optimization solution, the simulation experiment is carried out in CloudSim. The results show that the proposed algorithm can reduce the average completion time of tasks to imnrovethe efficiency of task processing and can get more reasonable cloud computing resource scheduling result.
出处 《计算机工程与应用》 CSCD 2013年第20期40-44,共5页 Computer Engineering and Applications
基金 湖南省教育厅科学研究项目(No.11C0928).
关键词 云计算 资源调度 膜计算 粒子群优化算法 cloud computing resource scheduling membrane computing particle swarm optimization algorithm
  • 相关文献

参考文献15

二级参考文献98

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2张伟哲,刘欣然,云晓春,张宏莉,胡铭曾,刘凯鹏.信任驱动的网格作业调度算法[J].通信学报,2006,27(2):73-79. 被引量:33
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 4米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 5FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10.
  • 6ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf.
  • 7BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28.
  • 8CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610.
  • 9KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf.
  • 10ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52.

共引文献676

同被引文献56

  • 1尹红军,李京,宋浒,李凌.云计算中运营商效益最优的资源分配机制[J].华中科技大学学报(自然科学版),2011,39(S1):51-55. 被引量:13
  • 2徐鹏,张岩江,苏森.PaaS云资源调度技术研究[J].华中科技大学学报(自然科学版),2013,41(S2):52-56. 被引量:10
  • 3Zhu C,Ni J.Cloud model-based differential evolution algorithm for optimization problems[C]//2012 6th International Conference on Internet Computing for Science and Engineering(ICICSE),2012:55-59.
  • 4Mallipeddi R,Suganthan P N,Pan Q K,et al.Differential evolution algorithm with ensemble of parameters and mutation strategies[J].Applied Soft Computing,2011,11(2):1679-1696.
  • 5Fratila D,Caizar C.Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of Al Mg3[J].Journal of Cleaner Production,2011,19(6):640-645.
  • 6Subbaraj P,Rengaraj R,Salivahanan S.Enhancement of self-adaptive real-coded genetic algorithm using Taguchi method for economic dispatch problem[J].Applied Soft Computing,2011,11(1):83-92.
  • 7Gao Y,Hu X,Peng L,et al.A differential evolution algorithm combined with cloud model for RFID reader deployment[C]//2011 4th International Workshop on Advanced Computational Intelligence(IWACI),2011:193-198.
  • 8Wu W,Ni S,Wang F.A method for scheduling receiver tasks based on maximum allowed execution time dichotomy search[J].Journal of Navigation,2011,64(S1):83-90.
  • 9公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 10张葛祥,潘林强.自然计算的新分支——膜计算[J].计算机学报,2010,33(2):208-214. 被引量:69

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部