期刊文献+

热中子星r-mode不稳定性的研究

Research on r-mode Instability in Hot Neutron Star
原文传递
导出
摘要 理论上,不稳定的中子星r-mode能辐射可探测的引力波。采用具有超软对称能的非对称核物质物态方程,并考虑非牛顿引力效应影响,数值计算了由于CFS(Chandrasekhar-Friedmann-Schutz)不稳定性引起的年轻热中子星的r-mode不稳定窗口,给出了引力辐射时标和耗散时标随温度的变化关系。利用中子星观测对非牛顿引力参数的约束,给出了热中子星在高温区不稳定窗口边界的约束,并发现较大的非牛顿引力参数对应着较宽的r-mode不稳定窗口。研究结果可为地面引力辐射探测提供有意义的参考。 Theoritically, instable r-mode in neutron star may radiate detectable gravitational waves. In this work, considering the non-Newtonian gravity proposed in the grand unification theories, we numerically calculate the CFS instabilities of r-mode s in the hot neutron stars by using an equation of state with super-soft symmetry energies. The changes of the gravitational radiation time scales and the viscous time scales versus the stellar temperatures are obtained. And according to the constraint of the neutron star observation on the parameter of non-Newtonian gravity, the constraint on the boundary of the instability window is also given. It is found that a stronger non-Newtonian gravity corresponds with a wider r-mode instability window. These results may provide interesting reference for the gravitational wave detection.
作者 燕晶 文德华
出处 《原子核物理评论》 CAS CSCD 北大核心 2013年第3期359-363,共5页 Nuclear Physics Review
基金 国家自然科学基金资助项目(10947023 11275073 11205061) 中央高校基本科研业务费专项资金(2012ZZ0079) 教育部留学回国人员科研启动基金资助项目(第42批)~~
关键词 中子星 r-mode 非牛顿引力 neutron star r-mode non-Newtonian gravity
  • 相关文献

参考文献1

二级参考文献1

  • 1An Ping LIAO,Zhong Zhi BAI Department of Mathematics. Hunan University. Changshu, 410082. P. R. China Department of Mathematics and Information Science, Changsha University, Changsha 410003. P. R. China Academy of Mathematics and System. Sciences. Chinese Academy of Sciences. Beijing 100080. P. R. China State Key Laboratory of Scientific/Engineering Computing. Chinese Academy of Sciences. Institute of Computational Mathematics and Scientific/Engineering Computing. Academy of Mathematics and System Sciences. Chinese Academy of Sciences. P. O. Box 2719. Beijing 100080. P. R. China.The Constrained Solutions of Two Matrix Equations[J].Acta Mathematica Sinica,English Series,2002,18(4):671-678. 被引量:41

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部