期刊文献+

基于机器视觉的钢包头检测系统设计 被引量:5

Design of Steel Toecaps Inspection System Based on Machine Vision
下载PDF
导出
摘要 为了降低工人劳动强度,提高检测速度和检测准确度,将机器视觉引入到钢包头在线检测,并设计了检测样机。首先分析钢包头变形特点,提出了基于8个变形敏感区域14项重要指标的检测模型和流程,重点介绍了具体图形算法,最后基于halcon软件编程测试了系统性能,并分析了运动对测量的影响、误差来源及其消除方法。实验结果表明:在线检测的最大误差小于0.2 mm,漏检率0‰,检测精度远高于人工检测,平均视觉检测时间为213.71 ms,整体检测速度约是人工检测的3.5倍,所设计系统可以满足流水线检测需要。 This paper presents a prototype online system for the visual inspection of steel toecaps. Using this system can not only reduce the labor intensity of workers, but also improve the inspection speed and accuracy. By analyzing the deform characteristics of the steel toecaps, an inspection method was put forward based on 14 important indexes of the 8 main deformation areas. The specific graphics algorithm was focused. The system performance was tested based on the Halcon software, and the influence of motion on measurement, error sources and their eliminating methods was analyzed.Experimental results show that the maximum error of the system is less than 0.2 mm and the missing rate of defective product is 0‰. The inspection accuracy is much higher than the manual inspection, and the average inspection speed is 213.71 ms,which is faster 3.5 times than manual inspection. The design of the steel toecaps online vision inspection system can meet the demand of industrial production.
出处 《液晶与显示》 CAS CSCD 北大核心 2013年第5期770-775,共6页 Chinese Journal of Liquid Crystals and Displays
基金 国家自然科学基金(No.61101152)
关键词 机器视觉 钢包头 在线检测 图像处理 machine vision steel toecaps on-line inspecting image processing
  • 相关文献

参考文献8

二级参考文献45

  • 1阎世梁.基于FPGA和双DSP的实时图像处理器设计[J].微计算机信息,2008,24(11):207-208. 被引量:2
  • 2李喆,丁振良,袁峰.基于共面点的多视觉测量系统的全局标定[J].光学精密工程,2008,16(3):467-472. 被引量:22
  • 3任芝,张志东.手性垂直排列液晶盒的视角特性[J].液晶与显示,2005,20(1):32-36. 被引量:10
  • 4赵庆岚,宋卫东,支建庄,宋丕极,田昊.基于线阵CCD的弹丸图像处理[J].军械工程学院学报,2004,16(5):22-25. 被引量:5
  • 5[4]Ghosals Mehrotra R.Orathogonal Moment operators for subpixel edge detection.Pattern Recognition.1993,26(2):295~306.
  • 6[7]Lyvers Edward P,Mitchell Owen Robert.Subpixel Measurements Using a Moment-Based Edge Operator. IEEE Transactionson Pattern Analysis and Machine Intelligence,1989,11(12):1293~1307.
  • 7[1]Yu-Shan Li,Tzay Y.Yong.Subpixel Edge Detection and Estimation with a Microprocessor-Controlled Line Scan Camera.IEEE Transaction on Industrial Electronics,1988,35(1):105~112.
  • 8JANESICK J R. Scientific Charge-Coupled Device [M]. Bellingham, WA: SHE, 2001.
  • 9CHEN T, SHIBASAKI R, MORITA K, High precision georeference for airborne three-line scan- ner[TLS]imagery[C]. 3rd International Image Sensing Seminar on New Development in Digital Photogrammetry, Gifu,Japan, 2001: 71-82.
  • 10MANN S. Intelligent Image Processing [M]. NewYork: John Wiley and Sons, 2001.

共引文献69

同被引文献61

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部