期刊文献+

结合主成分与独立成分分析识别胃癌相关差异表达基因的方法研究 被引量:2

Identification of Gastric Cancer-related Differentially Expressed Genes by Combining PCA and ICA
原文传递
导出
摘要 筛选潜在的差异表达基因能够帮助人们了解基因的功能及基因在疾病发生发展中的作用。由于主成分与独立成分分析的侧重点不同,因此,结合两种方法发展了一种识别胃癌相关差异表达基因新方法,以提高结果的准确度和可信度。从包含7129个基因和29个样本的胃癌基因表达谱数据中,新方法识别了16个与胃癌发生发展显著相关的差异表达基因,这些基因被认为值得进一步开展实验研究。研究结果对揭示胃癌发生与发展机制具有促进作用。 Screening potential differentially expressed genes can help us to understand the functions of the genes and their roles in disease development. Due to the different emphases of the principal component analysis and independent component analysis, a novel method that combines principal component analysis and independent component analysis is proposed to identify differentially expressed genes associated with gastric cancer for the improvement of accuracy and credibility of results. This method screens out 16 differentially expressed genes which is significantly related to the occurrence and development of gastric cancer from gastric cancer gene expression data with 7129 genes and 29 samples. These genes are worthy to be studied experimentally. The results of this paper are helpful for revealing the occurrence and development mechanism of gastric cancer.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第5期914-918,931,共6页 Journal of Biomedical Engineering
基金 四川省科技支撑计划项目(2011FZ0034) 国家自然科学基金资助项目资助(81171411)
关键词 胃癌 基因表达数据 差异表达基因 主成分分析 独立成分分析 Gastric cancer Gene expression data Differentially expressed genes Principal component analysis(PCA) Independent component analysis (ICA)
  • 相关文献

参考文献25

  • 1B1TTNER M, MELTZER P, CHEN Y, et al. Molecularclassification o{ cutaneous malignant melanoma by gene ex- pressionprofiling[J]. Nature, 2000, 406(6795): 536 540.
  • 2KHAN J, WEI J S, RINGNER M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J]. Nat Med, 2001, 7(6): 673-679.
  • 3TAYLOR I W, IANDING R, WARDE-FARLEY D, et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome[J]. Nat Biotechnol, 2009, 27 (2): 199 204.
  • 4GONG Y H, CHEN M, XU Y, et al. Subtractive hybridiza tion analysis of gastric diseases associated Helicobacter pylori identifies peptidyl-prolyl isomerase as a potential marker for gastric cancer[J]. FEMSMicrobiolI.ett, 2011, 320(2)= 103 109.
  • 5KAISE M, MIWA J, TASH1RO .l, et al. The combination of serum trefoil factor 3 and pepsinogen testing is a valid non-en doscopic biomarker for predicting the presence of gastric canc- er: a new marker for gastric Cancer risk[J]. J Gastroenterol, 2011, 46(6): 736 745.
  • 6SIINA J, ART() K, MARJA I.I1SA K L, et al. C-enome- wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines[J]. BMC Cancer, 2010. 10, 73.
  • 7KANG H C, KIM I J, PARK J H, et al. Identification of genes with differential expression in acquired drug resistant gastric cancer cells using high-density oligonucleotide microar rays[J]. Clin Cancer Res, 2004, 10(1 Pt 1) : 272 284.
  • 8李辉,王金莲.基于基因表达谱的肿瘤预测模型研究[J].电子学报,2008,36(5):989-992. 被引量:6
  • 9李建更,高志坤,阮晓钢.基于随机森林的胃癌微阵列数据基因通路分析[J].生物学杂志,2010,27(2):1-4. 被引量:3
  • 10JONNALAGADDA S, SRIN1VASAN R. Principal compo nents analysis based methodology to identify differentially ex pressed genes in time-course microarray data[J]. BMC Bioin formaties, 2008, 9: 267.

二级参考文献32

  • 1李栋,荔建琦,欧阳曙光,吴松锋,王建,徐筱杰,朱云平,贺福初.高通量蛋白质组学研究中一种基于GO的蛋白质功能分析策略(英文)[J].生物化学与生物物理进展,2005,32(11):1026-1029. 被引量:9
  • 2Breiman L.Random Forests[M].Machine Learning,2001.
  • 3Díaz-Uriarte R,de Andrés S A.Gene selection and classification of microarray data using random forest[J].BMC Bioinformatics,2006,7:3.
  • 4Robnik-Sikonja M.Improving Random Forests.Machine Learning[C].ECML 2004 Proceedings,Springer,Berlin,2004.
  • 5Irizarry R A,Hobbs B,Collin F,et al.Exploration,normalization,and summaries of high density oligonucleotide array probe level data[J].Biootatistics,2003,4:249-264.
  • 6Ashburner M,Ball C A,Blake J A,et al.Gene ontology:tool for the unification of biology[J].Nature Genetics,2000,25:25-29.
  • 7Johannes T,Laura E,Olli S.,et al.Improving missing value estimation in microarray data with gene ontology[J].Bioinformatics,2006,22(5):566-572.
  • 8Strobl C,Boulesteix A L,Zeileis A,et al.Bias in random forest variable importance measures:illustrations,sources and a solution[J].BMC Bioinformatics,2007,8:25.
  • 9Chen C,Liaw A,Breiman L.Using random forest to learn imbalanced data[R].Statistics Department,University of California at Berkeley,2003.
  • 10Pang H,Lin A,Holford M,et al.Pathway analysis using random forests classification and regression[J].Bioinformatics,2006,22 (16):2028-2036.

共引文献7

同被引文献22

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 3Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 4Alizadeh A A,Elsen M B,Davis R E,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403(12):503-511.
  • 5Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(6):673-679.
  • 6Haferlach T,Kohlmann A,Wieczorek L,et al.Clinical utility of microarray-based gene expression profiling in the diagnosis and sub classification of leukemia:report from the international microarray innovations in Leukemia study group[J].Journal of Clinical Oncology,2010,28(15):2529-2537.
  • 7Singh D,Febbo P G,Ross K,et al.Gene expression correlates of clinical prostate cancer behavior[J].Cancer Cell,2002,1(2):203-209.
  • 8Shannon C E.A mathematical theory of communication[J].Bell System Technical Journal,1948,27:379-423,623-656.
  • 9Wu Y,Zhou Y,Saveriades G,et al.Local Shannon entropy measure with statistical tests for image randomness[J].Information Sciences,2013,222(10):323-342.
  • 10Liu C,Li K,Zhao L,et al.Analysis of heart rate variability using fuzzy measure entropy[J].Computers of Biology and Medicine,2013,43(2):100-108.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部