期刊文献+

基于支持向量机的癫痫脑电信号模式识别研究 被引量:7

The Recognition Methodology Study of Epileptic EEGs Based on Support Vector Machine
原文传递
导出
摘要 癫痫患者脑电(EEG)信号包含了癫痫发作过程中丰富的生理病理信息,EEG活动的动态变化为癫痫的自动检测系统的研发提供了依据和可能。本文从检测癫痫EEG信号的非线性动力学特征入手,提取EEG信号和小波分解后的各脑电特征波的非线性动力学特征值,作为输入向量构建支持向量机(SVM)分类器。结果表明,基于非线性动力学指标的SVM分类器对癫痫发作间期EEG和发作期EEG的分类准确率可达90%以上,SVM在癫痫EEG信号检测中作为非线性分类器具有较好的泛化能力。 EEG recordings contain valuable physiological and pathological information in the process of seizure. The dynamic changes of brain electrical activity provide foundation and possibility for research and development of auto- matic detection system about epilepsy. In this paper, a nonlinear dynamic method is presented for analysis of the nonlinear dynamic characteristics of EEGs and delta, theta, alpha, and beta sub-bands of EEGs based on wavelet transform. The extracted feature is used as the input vector of a support vector machine (SVM) to construct classifi- ers. The results showed that the classification accuracy of SVM classifier based on nonlinear dynamic characteristics to classify the EEG into interietal EEGs and ietal EEGs reached 90% or higher. The support vector machine has good generalization in detecting the epilepsy EEG signals as a nonlinear classifier.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第5期919-924,共6页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61263011 81000554) 中央高校基本科研业务费中山大学培育项目资助(11ykpy07) 广东省自然科学基金资助项目(S2011010005309)
关键词 癫痫 脑电 支持向量机 非线性动力学 模式识别 Epilepsy EEG Support vector machine (SVM) Nonlinear dynamic Pattern recognition
  • 相关文献

参考文献22

  • 1IASEMIDIS L D. Seizure prediction and its applications[J]. Neurosurg Clin N Am, 2011, 22(4) : 489-506,vi.
  • 2IASEMIDIS L D. Epileptic seizure prediction and control[J]. IEEE Trans Biomed Eng, 2003, 50(5): 549-558.
  • 3SALAM M T. SAWAN M , NGUYEN D K. Epileptic sei- zure onset detection prior to clinical manifestation[J]. Conf Proc 1EEE Eng Med Biol Soc, 2010, 2010.. 6210-6213.
  • 4OSORIO I, LYUBUSHIN A, SORNETTE D. Automated seizure detection: unrecognized challenges, unexpected in- sights[J]. EpilepsyBehav , 2011,22 (Suppl 1): S7-S17.
  • 5YUAN Q, ZHOU W, LI S, et al. Epileptic EEG classifica- tion based on extreme learning machine and nonlinear features [J]. EpilepsyRes, 2011, 96(1 2): 29-38.
  • 6LUTS J, OJEDA F, VAN DE PLAS R, et al. A tutorial on support vector machine based methods for classification prob-lems in chemometrics[J]. Anal Chim Acta, 2010, 665(2): 129-145.
  • 7I.I Y, WEN P P. Clustering technque-hased least square sup- port vector machine for EEG signal classification[J]. Comput Methods Programs Biomed, 2011, 104(3): 358-372.
  • 8KEI.LEHER D,TEMKO A,NASH D, et al. SVM detection of epileptiform activity in routine EEG[J]. Conf Proc IEEE Eng Med Biol Soc, 2010, 2010: 6369-6372.
  • 9ZAVAR M, RAHATI S, AKBARZADEH-T M R. Evolu tionary model selection in a wavelet-based support vecto rma chine for automated seizure detection[J]. Expert Syst Appl 2011, 38(9) = 10751-10758.
  • 10赵建林,周卫东,刘凯,蔡冬梅.SVM和小波分析方法在脑电分类中的应用[J].生物医学工程学杂志,2011,28(2):277-279. 被引量:10

二级参考文献24

  • 1李亚安,张效民,徐德民.海洋目标信号的混沌特性研究[J].探测与控制学报,2000,22(2):17-21. 被引量:4
  • 2贾民平,凌娟,许飞云,钟秉林.基于时序分析的经验模式分解法及其应用[J].机械工程学报,2004,40(9):54-57. 被引量:23
  • 3王兴元,骆超,邱天爽.HAI实验中EEG信号的非线性动力学研究[J].中国生物医学工程学报,2005,24(4):408-415. 被引量:8
  • 4奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 5Sholkopf B,Sung K,Burges C J C,et al.Comparing support vector machine with Gaussian Kernels to radial basis function classifiers[J].IEEE Trans,Signal Processing,1997,45:2758-2765.
  • 6Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998(2):121-167.
  • 7Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1999.
  • 8Hsu C W.A practical guide to support vector classification[EB/OL].[2009-06-20].http://www.csie.ntu.edu.tw/-cjlin/papers/guide/guide.pdf.
  • 9LIBSVM-A library for support vector machines[EB/OL].[2009-06-07].http://www.csie.ntu.edu.tw/-cjlin/libsvm/.
  • 10GREWAL S, GOTMAN J. An automatic warning system for epileptie seizures recorded on intraeerebral EEGs[J]. Clinical Neurophysiology, 2005,116 : 2460 - 2472.

共引文献295

同被引文献52

  • 1孙殿荣,邹晓毅.癫痫发病机制的研究进展[J].华西医学,2004,19(3):524-525. 被引量:5
  • 2李莹,欧阳楷.自动检测儿童脑电中癫痫波的方法研究[J].中国生物医学工程学报,2005,24(5):541-545. 被引量:6
  • 3白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用[J].生物医学工程学杂志,2007,24(1):200-205. 被引量:25
  • 4Tsipouras M G, Exarchos T P, Fotiadis D I, et al. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling [ C ]. IEEE Trans on Information Technology in Biomedicine, 2008, 12 (4) : 447 - 458.
  • 5Setiawan N A, Venkatachalam P A, Hani A M. Diagnosis of coronary ar- tery disease using artificial intelligence based decision support system [ C ]. Proceedings of the International Conference on Man-Machine Sys- tems, BatuFerringhi, Penang, 2009.
  • 6Anooj P K. Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules [ J ]. Journal of King Sand University Computer and Information Sciences, 2012, 24 (8) : 27 - 40.
  • 7Ahmad F A, Isa A M, Hussain Z, et al. Intelligent medical disease diag- nosis using improved hybrid genetic algorithm muhilayer pereeptron net- work [J]. Journal of Medical Systems, 2013, 37(2) : 1 -8.
  • 8Mokeddem S, Atmani B, Mokeddem M. Supervised feature selection for diagnosis of coronary artery disease based on genetic algorithm [ C ]. Pro- ceedings of International Conference on Computer Science & Information Technology, 2013 : 41 - 51.
  • 9Vapnik V N. Statistical learning theory [ M]. New York: Wiley, 1989.
  • 10Abibullaev B, An J. Decision support algorithm for diagnosis of AD/HD using electroencephalograms [ J ]. Journal of Medical Systems, 2012, 36 (2) : 2675 - 2688.

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部