期刊文献+

基于PLR-DTW的ECG身份识别方法 被引量:2

Biometric Identification Method for ECG Based on the Piecewise Linear Representation(PLR)and Dynamic Time Warping(DTW)
原文传递
导出
摘要 为提高心电(ECG)身份识别方法的正确率同时降低算法复杂度,本文提出了一种新的基于分段线性表示(PLR)和动态时间规整(DTW)的ECG身份识别方法。该方法首先对ECG信号进行预处理,根据R波峰值点提取ECG周期波形;再采用PLR法对ECG平均周期信号降维,提取其有效特征;最后用改进的DTW法衡量测试数据和模板之间的相似度,得到匹配结果。在PTB和MIT-BIH ECG数据库的验证下,与基于小波变换的ECG身份识别方法相比,该方法的身份识别正确率提高了近8%,算法的运行时间降低了近30%,该方法为基于ECG身份识别的工程应用提供了良好的理论基础。 To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PI.R method to keep important information of an ECG signal segment while reducing the data dimension at the same time. The im proved DTW method was used for similarity measurements between the test data and the templates. The perform- ance evaluation was carried out on the two ECG databases: PTB and MIT BIH. The analystic results showed that compared to the discrete wavelet transform method, the proposed PLR-DTW method achieved a higher accuracy rate which is nearly 8 % of rising, and saved about 30% operation time, and this demonstrated that the proposed method could provide a better performance.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第5期976-981,共6页 Journal of Biomedical Engineering
基金 山东省自然科学基金资助项目(ZR2010FM036) 国家自然科学基金资助项目(51075243)
关键词 身份识别 心电信号 分段线性表示法 动态时间规整法 Biometric identifica*ion Electrocardiogram (ECG) signal Piecewise linear representation (PLR) meth-od Dynamic time warping (DTW) method
  • 相关文献

参考文献15

  • 1JAIN A K, ROSS A, PRABHAKAR S. An introduction to biometric recognition [J]. IEEE Trans Circuits Sys Video Technol. , 2004, 14(1): 4-20.
  • 2CHAN A D C, HAMDY M M, BADRE A, et al. Person i dentification using electrocardiograms [C]//Canadian Conference on Electrical and Computer Engineering, Ottawa, Cana- da 2006: 1-4.
  • 3IRVINE J M, IEDERHOLD B K, GAVSHON L W, et al. Heart rate variability: a new biometric for human identifica2 tion [C]// International Conference on Artificial Intelligence, Las Vegas, U S A: 2001:1106-1111.
  • 4李中健,王庚勤,贾耀勤,王自强,田晨光,李世锋,井艳.应用心电图检查技术在活体个人识别中的研究[J].中国实用医刊,2008,35(4):23-25. 被引量:6
  • 5SHEN T W, TOMPKINS W J, HU Y H. One-lead ECG for identity verification [C]//The 2nd Joint Conference of the IEEE Engineering in Medicine and Biology Society and Bio- medical Engineering Society. Madison : 2002, 1 .. 23-26.
  • 6WANG Y J, AGRAFIOTI F, HATZINAKOS D, et al. A- nalysis of human electrocardiogram for biometric recognition [J]. Eurasip J Adv Signal Process, 2008(19) : 148658.
  • 7CHAN A D C, HAMDY M M, BADRE A, et al, Wavelet distance measure for person identification using electrocardio- grams[J]. IEEE Trans Instrum Meas, 2008, 57(2): 248- 253.
  • 8CHIU C C, CHUANG C M, HSU C Y. Discrete wavelet transform applied on personal identity verification with ECG signal[J]. Int J Wavelets, Multiresolut Inf Process, 2009, 7 (3) : 341-355.
  • 9AGRAFIOTI F, HATZINAKOS D. ECG biometric analysisin cardiac irregularity conditions[J]. Signal Image Video Process, 2009, 3(4) : 329-343.
  • 10PRATT K B, FINK E. Search for patterns in compressed time Series[J]. IntJ Image Graph, 2002, 2(1): 89-106.

共引文献5

同被引文献16

  • 1ISTEPANAIAN R S H, ZHANG, Y T. Guest editorial introduction to the special section: 4G health-the long-term evolution of m-health [ J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(1): 1-5.
  • 2YANG G. Body sensor networks [ M]. 2nd ed. Berlin: Springer, 2014: 6-11.
  • 3ZHOU X, LU Y, CHEN M, et al. A method of ECG template ex- traction for biometrics applications [ C]// Proceedings of the 36th Annum International Conference of IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2014:602 -605.
  • 4LOURENCO A, SILVA H, FRED A. ECG-based biometrics: a real time classification approach [ C]// Proceedings of the 2012 IEEE International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2012:1-6.
  • 5ZHAO C, WYSOCKI T, AGRAFIOTI F, et al. Securing handheld devices and fingerprint readers with EGG biometrics [ C]// Proceed- ings of IEEE 5th International Conference on Biometrics: Theory, Applications and Systems. Piscataway: IEEE, 2012:150-155.
  • 6KAVEH A, CHUNG W. Temporal and spectral features of single lead ECG for human identification [ C]// Proceedings of the 2013 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications. Piscataway: IEEE, 2013:17-21.
  • 7LI M, NARAYANAN S. Robust ECG biometrics by fusing temporal and cepstral information [ C]//Proceedings of the 20th International Conference on Pattem Recognition. Piscataway: IEEE, 2010:1326 - 1329.
  • 8SHEN J, BAO S, YANG L, et al. The PLR-DTW method for ECG based biometric identification [ C]// Proceedings of the 33rd An- num International Conference of IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2011:5248-5251.
  • 9JAIN A K, ROSS A A, NANDAKUMAR K. Introduction to bio- metrics [M]. Berlin: Springer, 2011:1-4.
  • 10刘泉影,毛承胜,聂碧娟,胡斌.普适环境下基于脑电的身份及上下文状态识别[J].东南大学学报(自然科学版),2010,40(A02):263-266. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部