摘要
本文提出一种基于小波包及多元多尺度熵的癫痫脑电(EEG)信号分类方法。首先应用小波包变换对原始EEG信号进行多尺度分解,并提取所需频段的小波包系数用以表示原始EEG信号;然后对选取的不同频段的小波包系数进行多元多尺度熵分析;最后用支持向量机(SVM)对EEG数据进行分类。针对波恩大学癫痫病中心公开EEG数据实验结果表明,该方法能够有效提取癫痫EEG特征,具有很好的分类效果。
In this paper, a new method combining wavelet packet transform and multivariate multiscale entropy for the classification of epilepsy EEG signals is introduced. Firstly, the original EEG signals are decomposed at multi- scales with the wavelet packet transform, and the wavelet packet coefficients of the required frequency bands are ex- tracted. Secondly, the wavelet packet coefficients are processed with multivariate multiscale entropy algorithm. Fi- nally, the EEG data are classified by support vector machines (SVM). The experimental results on the international public Bonn epilepsy EEG dataset show that the proposed method can efficiently extract epileptic features and the ac- curacy of classification result is satisfactory.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
北大核心
2013年第5期1073-1078,1090,共7页
Journal of Biomedical Engineering
基金
国家自然科学基金资助项目(60873121)
关键词
癫痫脑电
小波包变换
多元多尺度熵
支持向量机
Epilepsy EEG
Wavelet packet transform
Multivariate multiscale entropy
Support vector machines(SVM)