期刊文献+

基于小波包和多元多尺度熵的癫痫脑电信号分类方法 被引量:1

Epileptic EEG Signal Classification Based on Wavelet Packet Transform and Multivariate Multiscale Entropy
原文传递
导出
摘要 本文提出一种基于小波包及多元多尺度熵的癫痫脑电(EEG)信号分类方法。首先应用小波包变换对原始EEG信号进行多尺度分解,并提取所需频段的小波包系数用以表示原始EEG信号;然后对选取的不同频段的小波包系数进行多元多尺度熵分析;最后用支持向量机(SVM)对EEG数据进行分类。针对波恩大学癫痫病中心公开EEG数据实验结果表明,该方法能够有效提取癫痫EEG特征,具有很好的分类效果。 In this paper, a new method combining wavelet packet transform and multivariate multiscale entropy for the classification of epilepsy EEG signals is introduced. Firstly, the original EEG signals are decomposed at multi- scales with the wavelet packet transform, and the wavelet packet coefficients of the required frequency bands are ex- tracted. Secondly, the wavelet packet coefficients are processed with multivariate multiscale entropy algorithm. Fi- nally, the EEG data are classified by support vector machines (SVM). The experimental results on the international public Bonn epilepsy EEG dataset show that the proposed method can efficiently extract epileptic features and the ac- curacy of classification result is satisfactory.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第5期1073-1078,1090,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(60873121)
关键词 癫痫脑电 小波包变换 多元多尺度熵 支持向量机 Epilepsy EEG Wavelet packet transform Multivariate multiscale entropy Support vector machines(SVM)
  • 相关文献

参考文献26

  • 1LITT B, ECHAUZ J. Prediction Of epileptic seizures[J]. Lancet Neurol ,2002, 1(1): 22-30.
  • 2邵晨曦,卢继军,周颢.基于小波变换的脑电图癫痫波形检测[J].生物医学工程学杂志,2002,19(2):259-263. 被引量:12
  • 3WOLF A, SWIFT J B, SWINNEY H L,et al. Determining I.ya- punov exponents from a time series[J]. Physical, 1985 = 285-317.
  • 4KHAN Y U,GOTMAN J. Wavelet based automatics eizure de- tection in intracerebral electroencephalogram[J]. Clin Neurophysi- ol, 2003, 114(5).. 898-908.
  • 5吴婷,颜国正,杨帮华.基于小波包分解的脑电信号特征提取[J].仪器仪表学报,2007,28(12):2230-2234. 被引量:24
  • 6ACHARYA U R, MOLINARI F, SREE S V, et al. Automated diagnosis of epileptic EEG using entropies E J. Biomed Signal Process Control, 2012, 7(4) 401-408.
  • 7ABARBANEL H D I, BROWN R, KENNEl. M B, et al. Lya- punov exponents in chaotic systems:Their importance and their e valuation using observed data[J]. Int J Mod Phys, 1991, 5 (9) 1347-1375.
  • 8IASEMIDIS L D, SACKELLARES J C, ZAVERI H P, et al. Phase space topography and the Lyapunov exponent of electrocor- ticograms in partial seizures[J]. Brain Topogr, 1990, 2(3) : 187- 201.
  • 9颜志国,王志中,任晓梅.SVM和小波包变换在动作模式识别中的应用[J].中国医学物理学杂志,2006,23(1):64-66. 被引量:4
  • 10SUBASI A. Epileptic seizure detection using dynamic wavelet net- work[J]. Expert Syst Appl, 2005, 29(2): 343-355.

二级参考文献66

共引文献95

同被引文献4

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部