期刊文献+

基于大涡模拟的离心泵水动力噪声数值模拟 被引量:28

Numerical Simulation of Hydrodynamic Noise in Centrifugal Pump Based on LES
下载PDF
导出
摘要 运用计算流体力学(Computational fluid dynamics,CFD)技术及Lighthill声类比理论研究离心泵3个流量下由蜗壳及叶片表面偶极子声源产生的水动力噪声。离心泵内部瞬态流场由大涡模拟方法(Large-eddy simulation,LES)模拟得到,流场计算结果显示,各流量下隔舌处压力脉动在叶片通过频率BPF处有明显峰值,说明叶轮和隔舌之间的相互作用是引起离心泵隔舌处压力脉动的主要原因。以离心泵内表面作为边界元模型,考虑蜗壳的散射效果。采用直接边界元法求解离心泵内声场,声场计算结果与试验结果吻合良好,验证基于LES和Lighthill理论的流动噪声数值模拟方法的可行性。结果表明,轴频点的声压峰值在设计工况下最小,叶频及其谐频处的声压峰值随流量的增加而升高;通过计算叶片偶极子声源噪声,可以定量预测叶频及其谐频点的噪声;蜗壳偶极子噪声的计算值与试验结果趋势一致,小流量工况下误差较大。 The computational fluid dynamies(CFD) technique combined with the Lighthill acoustic analogy theory are applied to study the hyodynamic noise caused by the volute surface dipole and the blade rotating dipole in a centrifugal pump. The large eddy simulation method is employed to solve the transient flow field of the pump. The fiuid fields show that obvious peak of pressure fluctuations near the tongue is observed at blade passing frequency under different flow conditions, indicating that the interaction between the impeller and the tongue is the main cause of pressure fluctuation near the tongue. The interior boundary element method(BEM) model of pump is constructed, and the sound scattering effect of the volute easing is considered. The direct BEM is applied to solve the interior sound field of the pump. The computational results show good agreements with experimental ones. The validation of the LES combined with the Lighthill method for the hydrodynamic noise computation is verified. The results show that the sound pressure level at the shaft frequency under the design point is lowest, and the level of noise at the blade frequency and its harmonics becomes higher as the flow rate increases. The noise level at the blade frequency and its harmonics can be predicted quantitatively by calculating the blade rotating dipole source. The trend of the noise eansed by the volute surface dipole is identical with the experimental trend. Comparing with the design and higher flow rates, the error between simulation and experiment is bigger at partial flow rate.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第18期177-183,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(51109095 51079062 51179075) 国家科技支撑计划(2011BAF14B03) 江苏省自然科学基金(BK2010346 BA2010155 BY2011140) 江苏高校优势学科建设工程资助项目
关键词 离心泵 水动力噪声 大涡模拟 Lighthill声类比 偶极子 Centrifugal pump Hydrodynamic noise Large eddy simulation Lighthill aconstie analogy Dipole source
  • 相关文献

参考文献18

  • 1LANGTHJEM M A,OLHOFF N.A numerical study of flow-induced noise in a two-dimensional centrifugal pump[J].Part Ⅰ:Hydrodynamics Journal of Fluids and Structures,2004(19):349-368.
  • 2CHOI J S,MCLAUGHLIN D K,THOMPSON D E.Experiments on the unsteady flow field and noise generation in a centrifugal pump impeller[J].Journal of Sound andVibration,2003,263:493-514.
  • 3SRIVASTAV O P,PANDU K R,GUPTA K.Effect of radial gap between impeller and diffuser on vibration and noise in a centrifugal pump[C] //Journal of the Institution of Engineers (India):Mechanical Engineering Division,2003:36-39.
  • 4YUAN Shouqi,YANG Jun,YUAN Jianping,LUO Yin,PEI Ji.Experimental Investigation on the Flow-induced Noise under Variable Conditions for Centrifugal Pumps[J].Chinese Journal of Mechanical Engineering,2012,25(3):456-462. 被引量:12
  • 5刘厚林,王勇,袁寿其,谈明高.叶轮出口宽度对离心泵流动诱导振动噪声的影响[J].华中科技大学学报(自然科学版),2012,40(1):123-127. 被引量:23
  • 6谈明高,王勇,刘厚林,吴贤芳,王凯.叶片数对离心泵内流诱导振动噪声的影响[J].排灌机械工程学报,2012,30(2):131-135. 被引量:46
  • 7WANG M,FREUND J B,LELE S K.Computational prediction of flow-generated sound[J].Annual Review of Fluid Mechanics,2005,38(1):483-512.
  • 8KATO C,YAMADE Y,WANG H,et al.Numerical prediction of sound generated from flows with a low Mach number[J].Computers and Fluids,2007,36(1):53-68.
  • 9黄俊雄,耿少娟,吴瑞,刘克,聂超群,张宏武.不同叶轮形式下离心泵噪声特性对比研究[J].声学学报,2010,35(2):113-118. 被引量:28
  • 10JIANG Y Y,YOSHIMURA S,IMAI R,et al.Quanttative evaluation of flow-induced structural vibration and noise in turbomachinery by full-scale weakly coupled simulation[J].Journal of Fluids and Structures,2007,23(3):531-544.

二级参考文献63

共引文献108

同被引文献253

引证文献28

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部