期刊文献+

碳酸钙对炭黑/环氧树脂复合材料电性能的影响 被引量:6

Influence of CaCO_3 on Electrical Properties of Carbon Black / Epoxy Composites
下载PDF
导出
摘要 研究了CaCO3对CB/EP体系室温体积电阻率及阻温特性的影响。以碳酸钙(CaCO3)为改性剂,炭黑(CB)为导电填料,环氧树脂(EP)为基体树脂,2-乙基-4-甲基咪唑(2,4-EMI),采用超声分散法制备了CaCO3/CB/EP复合材料。通过对其室温体积电阻率和电阻-温度特性的测试,结合扫描电镜等进行了微观形貌表征与分析。结果表明,在CB含量为14%的CaCO3/CB/EP体系中,随CaCO3含量增加,复合材料的室温体积电阻率先下降后上升,在0.5∶1(CaCO3∶CB)时达到最小值;含CaCO3的EP/CB导电复合材料PTC(正温度系数)效应强于CB/EP复合材料,在测试温度范围内没有出现NTC(负温度系数)效应。 This paper studies the influnce of CaCO3 content on the room volume resistivity and resistance-temperature characteristics of CB/EP composite.With CaCO3 as additional agent,carbon black (CB)as conductive filler,epoxy resin (EP)as matrix resin,2-ethyl-4-methyl-imidazo(2,4-EMI)as curing agent,the CO3/CB/EP composites were prepared by ultrasonic dispersion.Its room volume temperature resistance and volume resistance-temperature characteristics were tested,morphology properties were analyzed by scanning electron microscopy.The results show that,in the system of CaCO3/CB/EP which CB content is 14%,with increase of CaCO3content,the room volume temperature volume resistivity of the composites decreases and then increases.The volume resistivity reaches minimum at a ration of 0.5∶1 (CaCO3∶ CB).The PTC (Positive temperature coefficient)effect of the CaCO3/CB/EP composite material is stronger than that of EP/CB composite material,and it has no NTC (Negative temperature coefficient)effect within the test temperature.
出处 《航空材料学报》 EI CAS CSCD 北大核心 2013年第5期61-65,共5页 Journal of Aeronautical Materials
基金 西北工业大学研究生创业种子基金(Z2013148)
关键词 环氧树脂 炭黑 碳酸钙 阻温特性 PTC效应 epoxy resin (EP) carbon black (CB) calcium carbonate (CaCO3) resistance-temperature characteristic PTC effect
  • 相关文献

参考文献15

二级参考文献102

共引文献86

同被引文献61

  • 1曹素芝,孙晓刚,曾效舒.高速剪切对碳纳米管/环氧树脂复合材料导电性能的影响[J].机械工程材料,2008,32(6):50-52. 被引量:7
  • 2姜红,李树研.法庭科学中印刷油墨的检验方法[J].科学中国人,2005(9):58-59. 被引量:2
  • 3王文福.丁腈橡胶用增塑剂[J].世界橡胶工业,2005,32(9):5-6. 被引量:4
  • 4Kono A, Shimizu K, Nakano H, et al. Positive-temperature- coefficient effect of electrical resistivity below melting point of poly(vinyliden: fluoride) (PVDF) in Ni particle-dispersed PVDF composites[J]. Polymer,2012,53(8): 1 760-1 764.
  • 5Meng Longyue, Park S J. Preparation and characterization of reduced graphene nano-sheets via pre-exfoliation of graphite flakes bull[J]. Korean Chem Soc,2012,33(1):209-214.
  • 6Li Yuqi, Wang Qihua, Wang Tingmei, et al. Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites[J]. Journal of Materials Science,2012,47(2):730- 738.
  • 7May P, Khan U, O'NeiU A, et al. Approaching the theoretical limit for reinforcing polymers with graphene[J]. Journal of Materials Chemistry, 2012,22 (4): 1 278.
  • 8Weitz R T, Yacoby A. Nanomaterials:Graphene rests easy[J]. Nature Nanotechnology, 2010,5(10):699-700.
  • 9Ziegler K. Minimal conductivity of graphene:Nonuniversal values from the Kubo formula[J]. Physical Review B,2007,75(23):233- 407.
  • 10Lee C, Wei Xiaoding, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,321 (5 887):385-388.

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部