期刊文献+

Preparation and anti atomic oxygen erosion properties of OPPOSS/PI composites 被引量:1

Preparation and anti atomic oxygen erosion properties of OPPOSS/PI composites
下载PDF
导出
摘要 Atomic oxygen (AO) found in low earth orbit can cause serious erosion to polyimide (PI) materials, which greatly limits their lifetime. 8-phenyl silsesquioxane (OPPOSS) was synthesized, and OPPOSS/PI composites were pre- pared by physical blending, followed by thermal imidization to enhance the AO erosion resistance of PI materials. The morphology, composition, and structure of the composites were analyzed before and after AO exposure in a ground sim- ulated facility of atomic oxygen. After 16 h AO exposure, the OPPOSS/PI composite with 5wt% OPPOSS addition shows an erosion rate of about 1.4×10-24 cm3/atom with only 48% mass loss of that of PI without OPPOSS addition. The mixture of OPPOSS nano molecules is assembled into a kind of regular square structure and distributed evenly in OPPOSS/PI composites. Some SiO2 particles are formed in the composites during AO exposure, which can act as "inert points" to reduce the AO erosion rate of OPPOSS/PI composites. Atomic oxygen (AO) found in low earth orbit can cause serious erosion to polyimide (PI) materials, which greatly limits their lifetime. 8-phenyl silsesquioxane (OPPOSS) was synthesized, and OPPOSS/PI composites were pre- pared by physical blending, followed by thermal imidization to enhance the AO erosion resistance of PI materials. The morphology, composition, and structure of the composites were analyzed before and after AO exposure in a ground sim- ulated facility of atomic oxygen. After 16 h AO exposure, the OPPOSS/PI composite with 5wt% OPPOSS addition shows an erosion rate of about 1.4×10-24 cm3/atom with only 48% mass loss of that of PI without OPPOSS addition. The mixture of OPPOSS nano molecules is assembled into a kind of regular square structure and distributed evenly in OPPOSS/PI composites. Some SiO2 particles are formed in the composites during AO exposure, which can act as "inert points" to reduce the AO erosion rate of OPPOSS/PI composites.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第10期994-1000,共7页 矿物冶金与材料学报(英文版)
基金 fnancially supported by the National Natural Science Foundation of China(No.51206009)
关键词 composite materials polyimides SILSESQUIOXANES atomic oxygen EROSION composite materials polyimides silsesquioxanes atomic oxygen erosion
  • 相关文献

参考文献1

二级参考文献1

  • 1Coulter D R,O-Atoms degradation mecha-nism s of materials .N87-2 6 178,39页

共引文献32

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部