期刊文献+

高效蓝色有机发光材料与器件 被引量:5

Organic electroluminescent materials and devices
原文传递
导出
摘要 有机半导体由于具有柔软性而可卷曲成形,具有可溶加工性而采用印刷成膜,从而使得加工成本有可能大大降低而受到广泛关注.本文针对有机发光材料中n型材料不足及宽能带与高电子传输性不可同时实现的难题,我们设计与合成了一系列的宽带电子传输材料并应用于蓝色磷光器件,实现了将近100%的内量子效率蓝色磷光.针对蓝色发光材料色度不纯的问题,我们设计了深蓝色荧光材料,其器件色度坐标CIE(0.15,0.08),与NTSC标准蓝光相当接近,同时实现接近理论极限的外量子效率发光.针对器件中由于平面波导及表面等离激元等能量模式的损失,我们利用有机材料的自团聚现象在有机发光器件金属阴极上制备无规的纳米结构,把束缚能量转化成自由光子,使得顶出光效率提高到2.1–2.7倍,且不改变原有器件的发光光谱形状. The organic semiconductor has been paid for widespread concerns because it can be curled to form a film due to its flexibility and printability resulting from its high solubility in solvents, therefore the processing cost may be greatly reduced. Considering the poorness of effective electron transport materials and the dilemma of wide energy gap with high electron mobility for organic molecules, we have synthesized a series of electron transport materials for blue phosphorescent devices, nearly 100% internal quantum efficiencies has been achieved. Considering the impure chromaticity for blue light, we have designed a deep blue fluorescent material to give an emission for the device at CIE (0.15, 0.08), quite close to the NTSC standard blue, and a theoretical limit of the external quantum efficiency of the device has been obtained. Due to the energy loss resulting from the planar waveguide and surface plasmon mode in the device, random nanostructures have been fabricated on the metal cathode of organic light-emitting device through a self aggregation of organic materials, to convert the binding energy into free photons. The light extraction efficiency has been increased to 2.1-2.7 times higher, however, without changing the spectral shape of the device.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第10期1135-1143,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家重点基础研究发展计划(编号:2009CB930504 2013CB328704) 国家自然科学基金(批准号:61177020 10934001 11121091)资助项目
关键词 电子传输材料 蓝光 OLED 介观光学结构 表面等离激元 electron transporting material, blue, OLED, mesoscopic optical structure, surface plasmon
  • 相关文献

参考文献64

  • 1Chiang C K, Fincher C R, Park J Y W, et al. Electrical conductivity in doped polyacetylene. Phys Rev Lett, 1977, 39: 1098-1101.
  • 2Pope M, Magnante P, Kallmann H P. Electroluminescence in organic crystals. J Chem Phys, 1963, 38: 2042-2043.
  • 3Tang C W, VanSlyke S A. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51: 913-915.
  • 4Antoniadis H, Abkowitz M A, Hsieh B R. Carrier deep-trapping mobility-lifetime products in poly(p-phenylene vinylene). Appl Phys Lett, 1994, 65: 2030-2032.
  • 5Ma Y, Zhang H, Shen J, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexe. Synth Met, 1998, 94: 245-248.
  • 6Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395: 151-154.
  • 7Holmers R J, Andrade B W D, Forrest S R, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl Phys Lett, 2003, 83: 3818-3820.
  • 8Zhen Y, Eom S H, Chopra N, et al. Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement. Appl Phys Lett, 2008, 92: 223301.
  • 9Tokito S, Iijima T, Suzuki Y, et al. Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Appl Phys Lett, 2003, 83: 569-571.
  • 10Yeh S J, Wu M F, Song C T, et al. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices. Adv Mater, 2005, 17: 285-289.

二级参考文献68

  • 1邱国斌 薛定平.金属表面电浆简介.物理双月刊,2006,28(2):472-485.
  • 2Lixin Xiao et al.. Adv. Mater. 2009, 21(12):1271-1274.
  • 3Tang CW. VanSlyke SA. Organic electroluminescent diodes. Appl Phys Lett, 1987, 51:913-915.
  • 4Ma Y, Zhang H, Shen J, Che C. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes. Synth Met, 1998, 94: 245.
  • 5Burroughes JH, Bradley DDC, Brown AR, Marks RN, Kackay, Friend RH, Burn PL, Holmes AB. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347:539-541.
  • 6Xiao LX, Su SJ, Agata Y, Lan H, Kido J. Nearly 100% internal quantum efficiency in an organic blue-light electrophosphorescent device using a weak electron transporting material with a wide energy gap. Adv Mater, 2009, 21:1271-1274.
  • 7Gu G, Garbuzov DZ, Burrows PE, Burrows S, Forrest SR. High-external-quantum-efficiency organic light-emitting devices. Optics Letter, 1997, 22:396-398.
  • 8Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science, 2006, 311:189-193.
  • 9Hobson PA, Wasey JAE, Sage I, Barnes WL. The role of surface plasmons in organic light-emitting diodes. IEEE J Sel Top Quant, 2002, 8: 378-386.
  • 10Hong K, Lee JL. Review paper: Recent developments in light extraction technologies of organic light emitting diodes. Electron Mater Lett, 2011, 7:77-91.

共引文献4

同被引文献62

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部