期刊文献+

北京大学超小型激光加速器系统研究进展 被引量:2

Progress of compact laser plasma accelerator in Peking University
原文传递
导出
摘要 超强激光与等离子体相互作用可以获得高于传统加速器三个数量级以上的加速电场梯度,更加有效地加速离子,从而能够显著缩小加速器的体积和造价.鞘层加速(TNSA)和光压稳相加速(RPA)是目前研究得最多的两种主要激光加速机制.与鞘层加速相比,光压稳相加速的加速效率和离子能量更高、单能性更好.在提出光压稳相加速原理的基础上,北京大学正在建造一台基于该原理的超小型激光加速器系统.本文将介绍北京大学在激光加速研究方面的进展和激光加速器系统的研制情况,包括理论模拟、前期准备实验、自支撑纳米靶的制备以及离子输运线的初步设计. When ultra short and intense laser interacts with plasma, the accelerating field gradient can be three order of magnitude higher than the conventional accelerator, which can accelerate the ion more efficiently. So the accelerator scale and cost can be reduced greatly. Among the various acceleration mechanisms, target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA) are the two main mechanisms widely studied. The RPA mechanism can produce energetic ion with higher energy, narrower energy spectrum and higher acceleration efficiency than TNSA. Peking University proposed RPA mechanism in phase stable regime and is building a Compact laser plasma accelerator (CLAPA) basded on this mechanism. This paper presents the progress of laser acceleration research and the development of laser accelerator including theoretical simulation, proof of principle experiments, self-supporting ultra-thin target fabrication and preliminary design of beam line.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2013年第10期1282-1287,共6页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家重点基础研究发展计划(编号:2013CBA01502) 国家自然科学基金(批准号:11025523 10935002 10835003) 国家重大科学仪器设备开发专项(编号:2012YQ030142)资助项目
关键词 激光加速 光压稳相加速 自支撑纳米靶 laser accelerate, radiation pressure acceleration (RPA), self-supporting ultra-thin target
  • 相关文献

参考文献14

  • 1Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt Commun, 1985, 56: 219-221.
  • 2Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys Rev Lett, 2000, 85: 2945-2948.
  • 3Yan X Q, Wu H C, Sheng Z M, et al. Self-organizing gev, nanocoulomb, collimated proton beam from laser foil interaction at 7×1021 W/cm2. Phys Rev Lett, 2009, 103: 135001.
  • 4Yan X Q, Lin C, Sheng Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime. Phys Rev Lett, 2008, 100: 135003.
  • 5Wang H Y, Yan X Q, Chen J E, et al. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse. Phys Plasmas, 2013, 20: 013101.
  • 6Wang H Y, Lin C, Sheng Z M, et al. Laser shaping of a relativistic intense, short gaussian pulse by a plasma lens. Phys Rev Lett, 2011, 107: 265002.
  • 7Wang H Y, Lin C, Zheng F L, et al. High-quality proton bunch from laser interaction with a gas-filled cone target. Phys Plasmas, 2011, 18: 093105.
  • 8Robertson J. Diamond-like amorphous carbon. Mater Sci Eng R, 2002, 37: 129-281.
  • 9Brown G I. Cathodic arc deposition of films. Annu Rev Mater Sci, 1998, 28: 243-269.
  • 10祝娇,符合振,林晨,高原,赵栓,朱昆,陆元荣,陈佳洱,颜学庆.激光加速实验超薄类金刚石碳靶的制备[J].强激光与粒子束,2013,25(7):1723-1726. 被引量:7

二级参考文献13

  • 1Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J].PhysRev Lett, 2f)00, 85(14) : 2945-2948.
  • 2Hegelicb B M. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(26) : 441-444.
  • 3Mora P. Plasma expansion into a vacuum[J].Phys Rev Lett, 2003, 90: 185002.
  • 4Galliard S A, Kluge T, Flippo K A, et al. Increased laser-accelerated proton energies via direct laser-light pressure acceleration of electrons in microconetargets[J]. PhysPlasma, 2011, 18: 056710.
  • 5Yan Xueqing, Lin Chen, Sheng Zhengming, et alo Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Phys Rev Lett, 2008, 100 : 135003.
  • 6Robertson J. Diamond-like amorphous earbon[J]. Mater Sci Eng R, 2002, 37: 129-281.
  • 7Ma Wenjun, Liechtenstein V K, Szerypo J, et al. Preparation of self supporting diamond-like carbon nanofoils with thickness less than 5nm for laser driven ion acceleration[J]. Nuclear Instruments and Methods in Physics Research A, 2011, 655 : 53-56.
  • 8Henig A, Sokollik S, Sehnurer M, et al. Radiation pressure acceleration of ion beams driven by circularly polarized laser pulses[J]. Phys RevLett, 2009, 103: 245003.
  • 9Brown G I. Cathodic arc deposition of films[J]. Annu Rev Mater Sci, 1998, 28: 243-269.
  • 10Moseler M, Gumbsch P, Casiraghi C, et al. The ultrasmoothness of diamond-like carbon surfaces[J]. Science, 2005, 309(2) : 1545-1548.

共引文献6

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部