期刊文献+

基于近似零范数的稀疏核主成成分算法 被引量:3

Sparse kernel principal component algorithm based on an approximate zero norm
下载PDF
导出
摘要 核主成成分分析(KPCA)是一种有效的数据降维方法,其降维过程是计算待降维样本与所有训练样本核函数的线性叠加,所以其计算量依赖于训练样本的大小,致使降维效率很低。为了提高KPCA降维效率,提出利用近似的零范数对叠加系数施加稀疏约束,能够得到稀疏性很好的系数。降维时,去除大量系数为零的训练样本,所以能够显著提高降维速度。通过实验还发现该算法对离群点具有不错的鲁棒性,换句话说当训练人脸数据库中加入非人脸图像时能够较好的克服这些非人脸图像的影响。 Kernel principal component analysis (KPCA) is an effective method for data dimension reduction. The process is a linear superposition of samples for dimension reduction and kernel function of train samples, so the computation depends on the size of train samples, thus leading a lower efficiency. In order to improve efficiency of KPCA,this paper proposes applying a sparse constraint by an approximate zero norms to superposition coefficients,and obtains good sparse coefficients. When reducing dimensions, many train samples whose coefficient is zero are rejected, thus significant improving speed of dimension reduction. We also find this technique shows strong robustness for outliers by experiments, in other words, the algorithm proposed can overcome influence when we join non-face images to train face database.
出处 《电子测量技术》 2013年第9期27-30,共4页 Electronic Measurement Technology
基金 国家自然科学基金项目(61271412 61172121)
关键词 核主成成分分析 近似的零范数 稀疏约束 鲁棒性 kernel principal component analysis an approximate zero norm a sparse eonstraint~ robustness
  • 相关文献

参考文献10

二级参考文献64

共引文献43

同被引文献34

  • 1陶启贤.液氨整理综述[J].染整技术,2005,27(7):1-5. 被引量:12
  • 2ALFALOU A, BROSSEAU C. Robust and discriminat- ing method for face recognition based on correlation technique and independent component analysis model [J]. Optics Letters, 2011, 36(5) : 645-647.
  • 3KUO S C, LIN C J, LIAO J R. 3D reconstruction and face recognition using kernel-based ICA and neural net- works [ J ]. Expert Systems with Applications, 2011, 38(5) : 5406-5415.
  • 4LUG F, ZOU J, WANG Y. Incremental complete LDA for face recognition [ J ]. Pattern Recognition, 2012, 45(7) : 2510-2521.
  • 5CEVIKALP H, NEAMTU M, WILKES M, et al. Dis- criminative common vectors for face recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2005, 27( 1): 4-13.
  • 6KOLDOVSKY Z, TICHAVSKY P, OJA E. Efficient va- riant of algorithm fast ICA for independent component analysis attaining the Cramer-Rao lower bound [ J I. IEEE Transactions on Neural Networks, 2006, 17 (5) : 1265-1277.
  • 7LI J B, GAO H, PAN J S. Common vector analysis of Gabor features with kernel space isomorphic mapping for face recognition [ J ]. International Journal of Innovative Computing, Information and Control, 2010, 6(10).
  • 8WEN Y, HE L, SHIP. Face recognition using differ- ence vector plus KPCA [ J ]. Digital Signal Processing, 2012, 22(1): 140-146.
  • 9WEN Y. An improved discriminative common vectors and support vector machine based face recognition ap- proach[ J]. Expert Systems with Applications, 2012, 39(4): 4628-4632.
  • 10CHOI S I, CHOI C H, JEONG G M, et al. Pixel selec- tion based on discriminant features with application to face recognition[ J]. Pattern Recognition Letters, 2012, 33(9) : 1083-1092.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部