期刊文献+

训练结构化支持向量机的优化切平面法 被引量:1

Optimized cutting plane method for training a structural SVM
原文传递
导出
摘要 结构化支持向量机是机器学习中描述结构化输出问题的一种新模型,对其进行训练是一个典型的非光滑凸优化问题,最常用的训练算法是切平面法。切平面法中原问题的目标函数往往会发生振荡,因此一般需要加入线搜索环节。但是还没有针对结构化支持向量机的高效的线搜索方法。该文提出了一种优化的切平面法,通过二次插值来进行近似线搜索,并将其应用到结构化支持向量机的训练中。在多类分类上的实验表明:该算法的迭代次数接近精确线搜索,而每次迭代的计算量保持不变。在序列分类上的实验表明:该算法在训练其他复杂类型的结构化支持向量机时仍然比当前主流算法效率高很多。 The structural support vector machine (SVM) is a new model for structured output problem in machine learning. Model training is a typical nonsmooth convex optimization problem with the most commonly used training algorithm being the cutting plane algorithm. However, the objective function often oscillates in the cutting plane algorithm, so a line-search procedure is commonly added to the algorithm. There is no efficient line-search method for training structural SVM. This paper presents an optimized cutting plane algorithm which does an approximate line-search using quadratic interpolation to train a structural SVM. Tests on multiclass classification demonstrate that the number of iterations with this algorithm is roughly the same as an accurate line-search, with the number of computations in a single iteration remaining unchanged. Tests of sequence tagging verify that this algorithm is much more efficient than the current mainstream algorithm.
作者 肖锋 周杰
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第7期1057-1063,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家杰出青年科学基金项目(61225008) 国家自然科学基金重大国际合作研究项目(61020106004) 国家自然科学基金面上项目(61021063 61005023)
关键词 机器学习 结构化支持向量机 切平面法 近似线搜索 machine learning~ structural support vector machine^cutting plane algorithm~ approximate line-search
  • 相关文献

参考文献12

  • 1Joachims T, Finley T, Yu C J. Cutting-plane training of structural SVMs [J]. Machine Learning, 2009, 77(1): 27- 59.
  • 2Nowozin S, Lampert C H. Structured learning and prediction in computer vision[J]. Foundations and Trends in Computer Graphics and Vision, 2011, 6(3 - 4) : 185 - 365.
  • 3Bertelli L, Yu T, Vu D, et al. Kernelized structural SVM learning for supervised object segmentation[C]//Proc of the IEEE CVPR. Colorado Springs, CO, USA: IEEE Press, 2011: 2153- 2160.
  • 4Vedaldi A, Blaschko M B, Zisserman A. Learning equivariant structured output SVM regressors [C]// Proc of the IEEE ICCV. Barcelona, Spain: IEEE Press, 2011; 959- 966.
  • 5Joachims T. Training linear SVMs in linear time [C]// ACM SIGKDD International Conference On Knowledge Discovery and Data Mining (KDD). Philadelphia, PA, USA: ACM, 2006: 217-226.
  • 6Hiriart-Urruty J, Lemarechal C. Convex Analysis and Minimization Algorithms: Fundamentals [M]. New York, USA: Springer-Verlag, 1996.
  • 7Bertsekas D. Nonlinear Programming [M]. Belmont, Mass, USA: Athena Scientific, 1999.
  • 8Franc V, Sonnenburg S. Optimized cutting plane algorithm for large-scale risk minimization[ J]. The Journal of Machine Learning Research, 2009, 107 2157-2192.
  • 9Teo C, Vishwanthan S, Smola A, et al. Bundle methods for regularized risk minimization [J]. The Journal of Machine Learning Research, 2010, 11 : 311 - 365.
  • 10Yu C J, Joachims T. Training structural SVMs with kernels using sampled cuts [C]// ACM SIGKDD International Conference On Knowledge Discovery and Data Mining (KDD). LasVegas, Nevada, USA: ACM, 2008: 794-802.

同被引文献17

  • 1王煜,周立柱,邢春晓.视频语义模型及评价准则[J].计算机学报,2007,30(3):337-351. 被引量:15
  • 2Ballan L, Bertini M, Bimbo A D, et al. Event detection and recognition for semantic annotation of video [J]. Multimedia Tools and Applications, 2011, 51(1): 279-302.
  • 3Yong Rui, Huang T S, Mehrotra S. Exploring video structure beyond the shots [C]//Proceedings of IEEE International Conference on Multimedia Computing and Systems. Austin, TX, USA, 1998: 237-240.
  • 4Wang Zhiyong, Guan Genliang, Qiu Yu, et al. Semantic context based refinement for news video annotation [J]. Multimedia Tools and Applications, 2013, 67(3): 607-627.
  • 5Zarka M, Ammar A B, Alimi A M. Fuzzy reasoning framework to improve semantic video interpretation [J]. Multimedia Tools and ApplicationS, 2015, DOI 10.1007/s11042-015-2537-1.
  • 6Liang Bai, Lao Songyang, Jones G J F, et al. Video semantic content analysis based on ontology [C]// International Machine Vision and Image Processing Conference. IMVIP, Maynooth, Ireland, 2007, 117-124.
  • 7G6mez-Romero J, Patricio M A, Garcia J, et al. Ontology-based context representation and reasoning for object tracking and scene interpretation in video [J]. Expert Systems with Applications, 2011, 38(6): 7494-7510.
  • 8Huang Y P, Chiou C L, Sandnes F E. An intelligent strategy for the automatic detection of highlights in tennisvideo recordings [J]. Expert Systems with Applications, 2009, 36(6): 9907-9918.
  • 9Qian Xueming, Wang Huan, Liu Guizhong, et al. HMM based soccer video event detection using enhanced mid-level semantic [J]. Multimedia Tools and Applications, 2012, 60(1): 233-255.
  • 10Huang C L, Shih H C, Chao C Y. Semantic analysis of soccer video using dynamic bayesian network [J]. IEEE Transactions on Multimedia, 2006, 8(4): 749-760.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部