期刊文献+

基于卷积神经网络的小细胞型肺癌辅助检测方法 被引量:2

Small Cell Lung Cancer Auxiliary Detection Method Based on Convolution Neural Network
下载PDF
导出
摘要 肺癌是世界上患病率并且死亡率最高的疾病之一,而小细胞型肺癌由于密度差最大以及涉及较多的图像因素,是脏器中最容易诊断的癌症。创新性地提出一种新的辅助检测方法,即采取卷积神经网络算法辅助检测小细胞型肺癌,该算法已经在人脸识别、车辆识别和文字判别等领域取得了丰硕的成果。卷积神经网络很好地结合了之前检测算法的优点,又能兼顾准确性,更好地减少误诊率,提高学习效率。此外当有新的学习样本加入,在保持原有学习结果的基础上,只调整神经元的权值就能明显提高诊断率。 Lung cancer is one of the highest mortality in the world, due to its largest density and a lot of image factors, small cell lung cancer is the best to diagnose. This paper introduces a new method-Deep Learning which belongs to machine learning to diagnose small cell lung cancer. Convolution Neural Networks (CNN) has gained a lot of fame in Face recognition, vehicle identification and text discrimination fields. With the mode of Convolution Neural Networks, we can reduce the ratio of misdiagnosis largely. Moreover, if appending new complementing samples, the detection rate can be improved significantly, only adjusting a few adding neurons' weights while keeping previous weights unchanging.
出处 《中国数字医学》 2013年第10期65-67,72,共4页 China Digital Medicine
关键词 小细胞型肺癌 卷积神经网络 机器学习 small cell lung cancer, CNN, machine learning
  • 相关文献

参考文献7

  • 1Dayan P, Hinton G, Neal R, et al. The Helmholtz machine[J].Neural Computation, 1995 (7): 1022-1037.
  • 2Hildebrandt TH. Optimal Training of Threshold Linear Correlation Classifiers. IEEE Transactions on Neural Networks 1991,2(6):577-588.
  • 3Osindero S, Hinton GE. Modeling image patches with a directed hierarchy of Markov a random field[C] In Neural Information Processing Systems Conference (NIPS)20.
  • 4顾佳玲,彭宏京.增长式卷积神经网络及其在人脸检测中的应用[J].系统仿真学报,2009,21(8):2441-2445. 被引量:13
  • 5Jackman DMJohnson BE. Small-cell hmg cancer [J].The Lancet,2005,366 (9494):1385- 1396.
  • 6YLeCun YB, Henderson D.Globally Trained Handwritten Word Recognizer using Spatial Representation[C].Convolution Neural Networks and Hidden Markov Models in Advances in Neural Information Processing Systems.Cowan JD,Tesauro G,AlsPector J, Morgan Kaufmann Publishers, 1994(6):937-944.
  • 7Zhou ZH, Jiang Y,Yang YB,et al.Lung cancer cell identification based on artificial neural network ensembles [J].Artificial Intelligence in Medicine,2002,24(1):25-36.

二级参考文献9

  • 1白润才,李建刚,郭旭颖.基于图形用户界面的BP神经网络建模与仿真[J].系统仿真学报,2005,17(11):2825-2827. 被引量:2
  • 2孙宁,邹采荣,赵力.人脸检测综述[J].电路与系统学报,2006,11(6):101-108. 被引量:39
  • 3B Moghaddam, A Pentland. Probabilistic visual learning for object representation [J]. IEEE Trans Pattern Analysis and Machine Intelligence (S0162-8828), 1997, 19(7): 696-710.
  • 4H Rowley, S Baluja, T Kanade. Neural Network-Based Face Detection [J]. IEEE Trans Pattern Analysis and Machine Intelligence (S0162-8828), 1998, 20(1): 23-38.
  • 5Paul Viola. Rapid Object Detection using a Boosted Cascade of Simple Features [C]// IEEE Conference on Computer Vision and Patter Recognition (S0162-8828), 2001. USA: IEEE, 2001.
  • 6Jose Hiroki Saito, et al. Using CMU PIE Human Face Database to a Convolutional Neural Network-Neocognitron [R]// European Symposium on Artificial Neural Networks Bruges, Belgium: ESANN, 2005,(4): 27-29.
  • 7C Carcia, M Delakis. A Neural Architecture for Fast and Robust Face Detection, Proceeding JR]// 16th^tn International Conference on Pattern Recognition. Canada: ICPR, 2002, (2): 44-47.
  • 8C Carcia, M Delakis. Convolutional Face Finder: A Neural Architecture for Fast and Robust Face Detection [J]. IEEE Trans. Patterns Analysis and Machine Intelligence (S0162-8828), 2004, 26(11): 1408-1421.
  • 9梁路宏,艾海舟,肖习攀,叶航军,徐光祐,张钹.基于模板匹配与支持矢量机的人脸检测[J].计算机学报,2002,25(1):22-29. 被引量:57

共引文献12

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部