期刊文献+

一种基于视觉显著图的舰船红外图像目标检测方法 被引量:3

Algorithm for Detecting Ship Target in Infrared Image Based on Saliency Map
下载PDF
导出
摘要 提出了一种基于视觉显著图的红外舰船目标定位方法,即通过改进的Itti模型生成视觉显著图,并基于视觉显著图分割出目标区域,从而实现目标检测。先用小波变换替代Itti模型中的高斯滤波来生成图像多尺度金字塔,然后用center-surround算子提取出多尺度的视觉差异特征,并对生成的视觉特征图进行合成,生成显著图。最后,利用阈值分割方法分割出目标区域,并对原始图像进行标记,从而实现目标检测。实验结果表明,与传统的Otsu阈值分割方法相比,该方法能够准确检测出目标区域。 An infrared target location method based on a saliency map is proposed. That is, the target detection is implemented by using an improved Itti model to generate a saliency map and segmenting the target area in the saliency map. Firstly, the wavelet transformation other than the Gaussian filter in the Itti model is used to generate a multi-scale pyramid. Then, the center-surround operators are used to extract multi-scale saliency difference signatures and the generated saliency signature maps are combined into a saliency map. Finally, a threshold segmentation method is used to segment the target area. The original images are marked so as to implement target detection. The experimental result shows that compared with the traditional Otsu threshold segmentation method, this method can detect the target area more accurately.
出处 《红外》 CAS 2013年第10期31-36,共6页 Infrared
关键词 目标检测 视觉注意机制 感兴趣区域 显著图 target detection visual attention mechanism region of interest saliency map
  • 相关文献

参考文献11

二级参考文献39

共引文献26

同被引文献319

  • 1徐学强,汪渤,于家城,王闻博.一种新型不变矩在图像识别中的应用[J].光学技术,2007,33(4):580-583. 被引量:11
  • 2高红波,王卫星.一种二值图像连通区域标记的新算法[J].计算机应用,2007,27(11):2776-2777. 被引量:75
  • 3Alexe B, Deselaers T, Ferrari V. Multiple class segmen-tation using a unified framework over mean-shift patches [ C ]//In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 73-80.
  • 4Radhakrishna A, Francisco E, Patricia W, et al. Salient region detection and segmentation [ J ]. Computer Vision System, 2008:66-75.
  • 5Guo C, Zhang L. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression [ J ]. IEEE Transactions on Image Pro- cessing, 2010, 19 ( 1 ) : 185-198.
  • 6Alexander T, Jianbo S, Kostas D. Image matching via sa- liency region correspondences [ C ]//In: Proceedings of IEEE Conference on Computer Vision and Pattern Recogni- tion. Minneapolis, Minnesota, USA : IEEE, 2007 : 1- 8.
  • 7Loupias E, Sebe N, Bres S, et al. Wavelet-based salient points for image retrieval [ C ]//In : Proceedings of IEEE Conference on Image Processing. Vancouver, BC, Cana- da: IEEE, 2000:518-521.
  • 8Mahadevan V, Vasconcelos N. Spatiotemporal saliency in dynamic scenes [ J ]. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2010, 32 ( 1 ) : 171-177.
  • 9Stas G, Lihi Z, Ayellet T. Contextaware saliency detec- tion[J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2012, 34 (10) : 1915-1926.
  • 10Shen X, Wu Y. A unified approach to salient object de- tection via low rank matrix recovery [ C ]//In: Proceed- ings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA : IEEE, 2012 : 853- 860.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部