期刊文献+

障碍环境下多移动机器人动态优化队形变换 被引量:15

Dynamic and Optimized Formation Switching for Multiple Mobile Robots in Obstacle Environments
原文传递
导出
摘要 针对未知障碍环境下的地面多移动机器人,提出了在线的动态优化队形变换避障策略.该策略首先针对编队控制中常用的队形形状建立了队形知识库,同时充分考虑环境约束,设计了包含队形零变换、同构变换和异构变换3种模式的编队避障策略.其中,队形同构变换模式通过引入伸缩因子,在没有破坏原有队形结构的基础上实现了队形大小的缩放;队形异构变换模式下,在定义了包含队形失真度、能量消耗率和队形变换收敛时间比等性能指标的基础上,通过领航机器人获得的环境信息和当前的队形形状,对提出的环境适应度函数进行优化求解获得最佳的leader-follower拓扑结构.最终,不同场景下的大量仿真实验验证了本文方法切实有效. An online dynamic and optimized formation switching strategy is proposed for obstacle avoidance of multiple ground mobile robots in unknown obstacle environments. A formation knowledge base is built according to common forma- tion shapes in formation control, and a formation obstacle-avoiding strategy including none formation switching, isomorphic formation switching and isomeric formation switching is deigned, in which environment constraints are taken into consider- ation fully. In the isomorphic formation switching mode, the formation can be contracted or expanded in size by changing the dilation factor while preserving the shape. In the isomeric formation switching mode, performance indices including formation distortion degree, energy consumption ratio and formation change convergence ratio are established. On basis of the indices, environment information detected by the leader robot and current formation shape, the optimal leader-follower topology structure is obtained by optimizing the proposed environment fitness function. Finally, simulation experiments in various environments are carried out to demonstrate that the proposed strategy is feasible and effective.
出处 《机器人》 EI CSCD 北大核心 2013年第5期535-543,共9页 Robot
基金 国家自然科学基金资助项目(61105088)
关键词 多移动机器人 动态优化 队形变换 编队避障 multiple mobile robots dynamic optimization formation switching formation obstacle-avoiding
  • 相关文献

参考文献16

  • 1Das A K, Fierro R, Kumar V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Au- tomation, 2002, 18(5): 813-825.
  • 2Lim H, Kang Y, Kim J, et al. Formation control of leader fol- lowing unmanned ground vehicles using nonlinear model pre- dictive control[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 2009: 945-950.
  • 3Shao J Y, Xie G M, Yu J Z, et al. A tracking controller for mo- tion coordination of multiple mobile robots[C]//IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems. Pis- cataway, USA: IEEE, 2005: 783-788.
  • 4Cai W C, Weng L G, Zhang R, et al. Virtual leader based forma- tion control of multiple Unmanned Ground Vehicles (UGVs):Control design, simulation and real-time experiment[C]//7th In- ternational Conference on Cooperative Control and Optimiza- tion. Berlin, Germany: Springer-Verlag, 2007: 221-230.
  • 5Fredslund J, Mataric M J. A general algorithm for robot forma- tions using local sensing and minimal communication[J] IEEE Transactions on Robotics and Automation, 2002, 18(5): 837- 846.
  • 6Haque M A, Egerstedt M. Decentralized formation selection mechanisms inspired by foraging bottlenose dolphins[C]//Pro- ceedings of the Mathematical Theory of Networks and Systems. 2008.
  • 7Desai J P, Kumar V, Ostrowski J E Control of changes in for- mation for a team of mobile robots[C]//IEEE International Con- ference on Robotics and Automation. Piscataway, USA: IEEE, 1999: 1556-1561.
  • 8Mai C Y, Lian F L. Analysis of formation control and commu- nication pattern in multi-robot systems[C]//SICE-ICASE Inter- national Joint Conference. Piscataway, USA: 1EEE, 2006: 640- 645.
  • 9McClintock J, Fierro R. A hybrid system approach to forma- tion reconfiguration in cluttered environments[C]//Proceedings of the Mediterranean Conference on Control and Automation. Piscataway, USA: IEEE, 2008: 83-88.
  • 10Di Rocco M, Panzieri S, Priolo A. Formation control through environment pattern recognition for a multi-robot architecture [C]//European Conference on Mobile Robots. 2009: 241-246.

二级参考文献25

  • 1Cao Y U, Fukunaga A S, Kahng A B. Cooperative mobile robotics: Antecedents and directions[J]. Autonomous Robots, 1997, 4(1): 7-27.
  • 2Mariottini G L, Morbidi F, Prattichizzo D, et al. Leader-follower formations: Uncalibrated vision-based localization and control[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 2403-2408.
  • 3Balch T, Arkin R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
  • 4Beard R W, Lawton J, Hadaegh F Y. A feedback architecture for formation control[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2000: 4087-4091.
  • 5Fredslund J, Mataric M J. A general algorithm for robot formations using local sensing and minimal communication[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 837- 846.
  • 6Lewis M A, Tan K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4): 387-403.
  • 7Das A K, Fierro R, Kumar V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 813-825.
  • 8Desai J P, Ostrowski J E Kumar V. Modeling and control of formations of nonholonomie mobile robots[J]. IEEE Transactions on Robotics and Automation, 2001, 17(6): 905-908.
  • 9Nguyen A D, Ha Q P, Nguyen H T. Virtual-head robot tracking and three-point l- l control for multiple mobile robots[C]//IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications. Piscataway, NJ, USA: IEEE, 2006: 73-78.
  • 10Shao J, Xie G, Wang L. Leader-following formation control of multiple mobile vehicles[J], lET Control Theory and Applications, 2007, 1(2): 545-552.

共引文献24

同被引文献111

引证文献15

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部