期刊文献+

基于多辨识模型优化切换的USV航向动态反馈控制 被引量:6

Dynamic Feedback Controller Based on Optimized Switching of Multiple Identification Models for Course Control of Unmanned Surface Vehicle
原文传递
导出
摘要 为了解决无人水面航行器(USV)受外界干扰大且航向控制模型参数未知等航向控制中的相关难题,提出基于多辨识模型切换的动态反馈控制法.此控制法首先根据最小二乘法对USV系统航向模型进行辨识,构建过渡模型集;然后通过预设平均拟合偏差阈值法筛选过渡模型集,构建临时模型集,以避免模型集中子模型过分庞大造成控制过程计算量大的问题;最后根据临时模型集构建动态反馈控制库.为了从控制库中获取"最佳"控制策略,提出以控制性能指标为事件驱动的多辨识模型切换策略.多次湖泊试验表明:基于多模型切换的动态反馈法实现了系统航向无超调、无静差运动,从而提高了USV系统控制品质. A dynamic feedback control algorithm based on multiple identification models switching is proposed to solve the problems in course control of the unmanned surface vehicle (USV), such as large external disturbances and unknown course control model parameters. Firstly, a transitional model set is constructed by identifying USV course model according to the least square method. Then, a temporal model set is selected from the transitional models by introducing mean fitting error, which can avoid huge computation cost caused by large amount of sub-models in model set. Finally, a dynamic feedback controller database is designed based on the temporal model set. Meanwhile, using control performance indexes as event driven factors, some switching methods for multiple identification models are taken to obtain optimal controllers from the controller database. Some lake trials show that the multi-model switching based dynamic feedback method can improve the control performances, and the USV can move without overshoots or static errors.
出处 《机器人》 EI CSCD 北大核心 2013年第5期552-558,共7页 Robot
基金 中国科学院科技创新重点部署项目(KGFZD-125-014) 江西省教育厅科技项目(GJJ13466) 机器人学国家重点实验室开放课题(2012-008) 国家自然科学基金资助项目(51009016)
关键词 无人水面航行器 最小二乘法 辨识模型 动态反馈控制 unmanned surface vehicle least square method identification model dynamic feedback control
  • 相关文献

参考文献20

二级参考文献103

共引文献75

同被引文献47

  • 1高剑,徐德民,严卫生,张福斌.无迹卡尔曼滤波及其在三维水下目标跟踪系统中的应用[J].船舶工程,2005,27(3):24-28. 被引量:6
  • 2Harvey B, Zakutnyaya O. Russian space probes: Scientific dis- coveries and future missions[M]. London, UK: Springer, 2011.
  • 3Wilhelms D E. To a rocky moon - a geologist's history of lu- nar exploration[M]. Tucson, USA: University of Arizona Press, 1994.
  • 4Neal C R. The moon 35 years after Apollo: What's left to learn?[J]. Chemie der Erde - Geochemistry, 2009, 69(1): 3-43.
  • 5Jaumann R, Hiesinger H, Anand M. Geology, geochemistry, and geophysics of the Moon: Status of current understanding[J]. Planetary and Space Science, 2012, 74(1): 15-41.
  • 6Anand M, Crawford I A, Balat-Pichelin M, et al. A brief re- view of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications[J]. Planetary and Space Science, 2012, 74(1): 42-48.
  • 7Crawford I A, Joy K H. Lunar exploration: Opening a win- dow into the history and evolution of the inner Solar System[J]. Philosophical Transactions of the Royal Society A: Mathemati- cal, Physical and Engineering Sciences, 2014, 372(2024): 1-21.
  • 8Zacny K, Paulsen G, Davis K, et al. Honeybee robotics plane- tary drill systems[C]//Proceedings of the 39th Lunar and Plane- tary Science Conference, Lunar and Planetary Science XXXIX, League City, USA: ASCE, 2008: No.1355.
  • 9Kemurdzhian A L, Gromov V V, Cherkasov I I. Automatic sta- tions for investigation of the lunar surface[M]. Moscow, USSR: Mashinostroyeniye Press, 1976.
  • 10Glass B, Cannon H, Branson M, et al. DAME: Planetary- prototype drilling automation[J]. Astrobiology, 2008, 8(3): 653- 664.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部