期刊文献+

可控方向滤波器在三维兴趣点检测中的应用

Application of Steerable Filter in 3D Interest Points Detection
下载PDF
导出
摘要 针对人体动作识别的应用,提出了利用可控方向滤波器和Gabor滤波器相结合的方法检测三维视频信号的兴趣点。针对三维空间中兴趣点,利用HOG/HOF作为底层特征,进行稀疏编码表示;进一步,将三维空间中的兴趣点沿时间轴投影,利用空间金字塔和Max Pooling技术,将一个视频表示成若干向量的串接表示;这时的视频表示结合了整体训练数据库中特征的分布特性,因此可以作为中层的特征表示。利用SVM分类器,在HMDB数据库上,该算法获得比基于Harris 3D滤波器的特征表示更好的效果,和近期提出的算法相比,性能有很大的提高。 For human action recognition,this paper proposes a method of combining the steerable filter with Gabor filter to detect interest points in 3D video. For interest points in 3D space, HOG/HOF is used as low level feature to implement sparse code representation. When projecting the 3D interest points into x-y plane,it is easy to combine spatial pyramid with max pooling to represent the video itself as the cascade of each vector corresponding to each location. Since this kind of representation can reflect the distribution information to some extent,it can be used as mid-level feature representation. On HMDB database,the proposed approach can achieve better effect than the feature representation of Harris 3D filter by SVM, and comparing with the approaches proposed recently,it has higher improvement.
作者 张璐琳
机构地区 中国人民解放军
出处 《无线电通信技术》 2013年第5期81-84,共4页 Radio Communications Technology
关键词 可控滤波器 GABOR滤波器 空间金字塔 动作识别 steerable filter Gabor filter spatial pyramid action recognition
  • 相关文献

参考文献12

  • 1CHOMAT O, CROWLEY J. Probabilistic Recognition of Activity Using Local Appearance [ C ]// IEEE Conference on Computer Vision and Pattern Recognition ( CVPR ) , 1999,2 : 150 - 1.52.
  • 2ZELNIK-MANOR L, IRANI M. Event-based Analysis of Video [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ,2001:77 - 80.
  • 3BLANK M,GOREL1CK L,SHECHTMAN E,et al. Actions space-time shapes [C]// IEEE International Conference on Computer Vision ( ICCV ) , 2005 : 1395 - 1402.
  • 4LAPTEV 1, LINDEBERG T. Space-time interest points [C]// IEEE International Conference on Computer Vision (ICCV) ,1988:i47 - 151.
  • 5SCHULDT C, LAPTEV I,CAPUTO B. Recognizing human actions: A local SVM approach [C]// International Conference on Pattern Recognition ( 1CPR ) , 2004,3 : 32 -36.
  • 6DOLLAR P, RABAUD V, COTTRELL G, et al. Behavior Recognition via Sparse Spatio-temporal Features [ C]// 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance ( VS-PETS ) , 2005:65 - 72.
  • 7FREEMAN W T,ADELSON E H. The Design and Use of Steerable Filters [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991,13 ( 9 ) :891 - 906.
  • 8YANG jian-chao, YU Kai, GONG Yi-hong, et al. Linear Spatial Pyramid Matching using Sparse Coding for Image Classification. [C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2009:1121 -1125.
  • 9LAZEBNIK S, SCHM1D C, PONCE J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. [C]// CVPR, 2006:880 -885.
  • 10KUEHNE H,JHUANG H,GARROTE E,el al. HMDB: A Large Video Database for Human Motion Recognition [C]// ICCV, 2011:612 -616.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部