期刊文献+

Approach to estimation of vehicle-road longitudinal friction coefficient 被引量:2

一种道路纵向附着系数估计方法(英文)
下载PDF
导出
摘要 According to the road adaptive requirements for the vehicle longitudinal safety assistant system an estimation method of the road longitudinal friction coefficient is proposed.The method can simultaneously be applied to both the high and the low slip ratio conditions. Based on the simplified magic formula tire model the road longitudinal friction coefficient is preliminarily estimated by the recursive least squares method.The estimated friction coefficient and the tires model parameters are considered as extended states. The extended Kalman filter algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The Carsim simulation results show that the proposed method is better than the conventional algorithm. The road longitudinal friction coefficient can be quickly and accurately estimated under both the high and the low slip ratio conditions.The error is less than 0.1 and the response time is less than 2 s which meets the requirements of the vehicle longitudinal safety assistant system. 针对汽车纵向安全辅助系统道路自适应的要求,提出了一种道路纵向附着系数估计方法.该方法能够同时适应高滑移率和低滑移率工况.首先基于简化魔术轮胎模型,利用递归最小二乘方法实时初步估计出纵向附着系数,然后将所估计出的附着系数与轮胎模型参数作为扩充状态,利用扩展卡尔曼滤波算法,滤除信号噪声,实现轮胎模型系数的自适应调整,最终实时获取准确的道路纵向附着系数估计,并通过车辆动力学软件Carsim仿真验证了算法的有效性和可行性.结果表明该算法优于传统算法,在高滑移率和低滑移率工况下都能够快速、准确地估计出道路附着系数,误差小于0.1,响应时间小于1 s,满足车辆纵向安全辅助系统的需要.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2013年第3期310-315,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.61273236) the Natural Science Foundation of Jiangsu Province(No.BK2010239) the Ph.D. Programs Foundation of Ministry of Education of China(No.200802861061)
关键词 road friction coefficient recursive least squares extended Kalman filter vehicle longitudinal safety assistantsystem 道路附着系数 递归最小二乘法 扩展卡尔曼滤波 汽车纵向安全辅助系统
  • 相关文献

参考文献2

二级参考文献33

  • 1Gustafsson Fredrick. Slip-based Tire-Road Friction Estimation [J]. Automatica,1997,33(6) :1087 - 1099.
  • 2Gustafsson Fredrick. monitoring Tire-Road Friction Using the Wheel Slip[J]. IEEE Control Systems,1998(8) :42 -49.
  • 3Hwang Wookug, Song Byung-suk. Road Condition Monitering Sys-tem Using Tire-Road Friction Estimation [ C ]. Proceedings of AVEC'00, Ann Arbor, USA, Aug. 2000.
  • 4Ray L R. Experimental Determination of Tire Forces and Road Friction[C]. Proceedings of the American Control Conference, Philadelphia, Jun. 1998.
  • 5Shim Taehyun, Margolis Donald. Model-Based Road Friction Estimation[J]. Vehicle System Dynamics,2004,41 (4) :249 -276.
  • 6Carlson C R, Gerdes J C. Nonlinear Estimation of Longitudinal Tire Slip Under Several Driving Conditions [ C ]. Proceedings of the 2003 American Control Conference, Denver, USA, Jun. 2003.
  • 7Huang Pei-shih, Smakman Henk, Guldner Jiirgen. Design of A Vehicle State Observer[ C]. Proceedings of AVEC'00, Ann Arbor, USA, Aug. 2000.
  • 8Müller Steffen,Uchanski Michael,Hedrick Karl.Estimation of the Maximum Tire-Road Friction Coefficient[J].Journal of Dynamic Systems,Measurement,and Control,2003,125:607-617.
  • 9Eichhorn U,Roth J.Prediction and Monitoring of Tyre/Road Friction[C].XXIV FISITA Congress,London,GB,1992.
  • 10Breuer B,Eichhorn U.Measurement of Tyre/Road Friction Ahead of the Car and Inside the Tyre[C].Proceedings of AVEC 1992:347-353.

共引文献61

同被引文献22

  • 1YANG S M,KIM J H. Validation of the 6-dof vehicle dy-namics model and its related VBA program under the con-stant radius turn manoeuvre[ J]. International Journal ofAutomotive Technology, 2012,13(4) : 593-605.
  • 2KIM J. Effect of vehicle model on the estimation of lateralvehicle dynamics [ J ]. International Journal of Automo-tive Technology, 2010, 11(3) : 331-337.
  • 3ANDERSON R, BEVLY D M. Using GPS with a model-based estimator to estimate critical vehicle states [ J ] . Ve-hicle System Dynamics, 2010,48(12) : 1413-1438.
  • 4PAZOOKI A, RAKHEJA S,CAO D. Modeling and vali-dation of off-road vehicle ride dynamics [ J] . Mechanicalsystems and signal processing, 2012, 28(5) : 679-695.
  • 5HASSANI V,TIAHJOWIDODO T,DO T N. A survey onhysteresis modeling,identification and control [ J ]. Me-chanical Systems and Signal Processing,2014,49(2):209-233.
  • 6BURNHAM K P, ANDERSON D R, HUYVAERT K P.AIC model selection and multimodel inference in behav-ioral ecology : some background, observations, and com-parisons [J ] . Behavioral Ecology and Sociobiology,2011,65(1) : 23-35.
  • 7宋健,杨财,李红志,李亮.AYC系统基于多传感器数据融合的路面附着系数估计[J].清华大学学报(自然科学版),2009,49(5):715-718. 被引量:20
  • 8管西强,袁明,张建武.基于子空间方法的车辆稳态操纵性模型辨识[J].上海交通大学学报,2011,45(4):457-463. 被引量:2
  • 9赵述龙,安宏雷,刘建平,马宏绪.四旋翼飞行器模型的气动参数辨识[J].电子测量与仪器学报,2013,27(8):744-749. 被引量:23
  • 10金智林,马翠贞,张甲乐.基于电液制动的运动型多用途车防侧翻控制[J].仪器仪表学报,2013,34(11):2572-2578. 被引量:7

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部