期刊文献+

曲波域高斯混合尺度模型的图像压缩重构 被引量:1

Image reconstruction algorithm based on the curvelet gaussian scale mixture model
原文传递
导出
摘要 压缩传感理论将信号的采样与压缩同时进行,利用信号在变换基上可以稀疏表示的先验知识,从比香农采样少得多的观测值中重构原始信号。近年来,两步迭代阈值算法作为一种求解反问题的优化方法,因其与多尺度几何分析存在紧密联系,且算法参数少,思想比较简单等特点,已经应用到了压缩重构中。但其使用时域的软硬阈值算子,不能获得很好的图像稀疏表示,从而使得算法重构精度不高。针对上述问题,在研究两步迭代阈值算法的基础上,提出一种自适应的两步迭代阈值算法。该算法利用当前估计值提供的信息自适应估计步长参数,保证了估计值向最优解方向移动,提高了算法的重构精度,且针对其稀疏表示信号能力不足的缺点,运用高斯混合尺度模型对曲波邻域系数进行建模,充分利用曲波变换平移不变性和多方向选择性的优点,增加了图像表示的稀疏度。最后将其应用到图像压缩重构中,实验结果表明,该算法在峰值信噪比和主观视觉上都优于小波域高斯混合尺度模型和曲波硬阈值重构方法。 Compressed sensing theory samples and compresses the signals at the same time and uses the prior knowledge that signals can be represented sparsely in the transform domain to reconstruct the original signals with less measurements than Shannon-Nyquist theory. Recently, two-step Iterative Shrinkage/Threshold algorithm has been applied to compressed recon- struction as an optimization method to solve inverse problems for its tight connection with muhi-scale geometry analysis, fewer parameters and simplicity. Using the hard and soft threshold operators in the time domain makes it hard to obtain sparse rep- resentation for two dimensional images. Consequently, the reconstruction precision of the algorithm is low. Based on the TWIST algorithm, an adaptive two-step Iterative Shrinkage/Threshold algorithm is presented. It makes use of the information obtained from current estimated values to calculate the step parameters and ensure the estimate value moving towards the opti- mum solution to improve its reconstruction precision. Regarding the poor ability to represent images sparsely, we use the Gaussian scale mixture model to model the curvelet neighborhood coefficients and enhance the ability of image sparse repre- sentation with the shift-invariance and directional-selectivity of the curvelet transform. Finally, the method is applied to image compression reconstruction and the experimental results show that it is better than both, the wavelet Gaussian scale mixture models and the curvelet hard threshold reconstruction methods in terms of subjective visual and peak signal noise ratio.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第10期1247-1254,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61101248) 陕西省科技攻关项目(2011K06-39) 中央高校基本科研业务费(K5051303013)
关键词 压缩重构 两步迭代阈值 曲波域高斯混合尺度模型 自适应步长 compressed sensing two-step iterative shrinkage/threshold algorithm curvelet gaussian scale mixture adaptive step
  • 相关文献

参考文献15

  • 1Donoho D L Compressed sensing[J]. IEEE Transactions on In?formation Theory, 2006, 52 (4): 1289-1306.
  • 2Candes E, Wakin M. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25 ( 2) : 21-30.
  • 3李树涛,魏丹.压缩传感综述[J].自动化学报,2009,35(11):1369-1377. 被引量:204
  • 4Mallat S G, Zhang Z. Matching pursuits with time-frequency dic?tionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
  • 5TroppJ, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Infor?mation Theory, 2007 , 53 ( 12) : 4655 -4666.
  • 6Do T T, Gan L, Nguyen N, et al. Sparsity adaptive matching pur- suit algorithm for practical compressed sensing[C]// Proceedings of the 42nd Asilomar Conference on Signals, Systems and Comput?ers. Pacific Grove, California: IEEE, 2008: 581-587.
  • 7周彬,朱涛,张雄伟.压缩感知新技术专题讲座(二) 第3讲 压缩感知技术中的信号稀疏表示方法[J].军事通信技术,2012,33(1):85-89. 被引量:4
  • 8李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152. 被引量:55
  • 9Daubechies I, Defrise M, Mol C De. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Comm. pure. Appl. Math. , 2004, 57 (II ) : 1413 -1457.
  • 10Bioucas DiasJ M, Figueiredo MAT. A new TWIST: two-step iterative shrinkage/thresholding algorithms for Image restoration[J]. IEEE Transactions on Image proce-ssing, 2007, 16 ( 12) : 2992-3004.

二级参考文献111

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 3A Hyvarinen, J Karhunen, E Oja. Independent component analysis[M]. New York: Wiley, 2001.
  • 4A Belouchrani,K A Merairn, J-F Cardoso, E Moulines. A blind source separation technique based on second order statistics[ J]. reEF, transactions on Signal Processing, 1997, 45 (2) : 434 - 444.
  • 5B A Pearlrnutter, V K Potluru. Sparse separation:Principles and tricks[ A]. Proceedings of International Society for Optical Engineering(SPIE) [ C]. Orlando, FL, USA,2003,5102:1 - 4.
  • 6P G Georgiev,F Theis,A Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures [ J]. IEEE Transactions on Neural Network, 2005, 16 ( 4 ) : 992 - 996.
  • 7M Zibulevsky, B A Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary [J ]. Neural Computation,2001,13(4) : 863 - 882.
  • 8J L Starck, M Elad, D Donoho. Redundant multiscale transforms and their application for morphological component analysis[J]. Advances in Imaging and Electron Physics, 2004, 132 (82) : 287 - 348.
  • 9J L Starck, M Elad, D Donoho. Image decomposition via the combination of sparse representation and a variational approach [J]. IEEE Transactions on Image Processing, 2005, 14( 10): 1570- 1582.
  • 10E J Candes. Ridgelts: theory and applications[ D ]. USA: Department of Statistics, Stanford University, 1998.

共引文献260

同被引文献20

  • 1黎洪松,全子一.图像矢量量化──频率敏感自组织特征映射算法[J].通信学报,1995,16(2):59-64. 被引量:20
  • 2Coates A, Andrew Y N. The importance of encoding versus training with sparse coding and vector quantization [C]//Proceedings of the 28th International Conference on Machine Learning.Stanford University, Stanford,CA,USA: Omnipress,2011:921-928.
  • 3Hou X, Research of model of quantum learning vector quantization neural network [C]//Proceedings of Electronic and Mechanical Engineering and Information Technology.Xi\'an,China:IEEE,2011:3893-3896.
  • 4Kohonen T. Self-Organizing Maps [M]. Berlin, German: Springer,2001.
  • 5Bebis G, Georgiopoulos M, Lobo N V. Using self-organizing maps to learn geometric hash functions for model-based object recognition [J]. IEEE Transactions on Neural Networks, 1998,9(5):560-570.
  • 6Singh A V, Murthy K S. Neuro-curvelet model for efficient image compression using vector quantization [C]//Proceedings of International Conference on VLSI. Berlin: Springer, 2013, 258: 179-185.
  • 7Hong M H. Vector quantization using the firefly algorithm for image compression [J]. Expert Systems with Applications,2012,39(1):1078-1091.
  • 8Agarwal R, Sarma S V. An analytical study of relay neuron\'s reliability: dependence on input and model parameters [C]//Proceedings of IEEE 2011 Annual International Conference. Boston, MA, USA: IEEE,2011:2426-2429.
  • 9Mavridis D. Color quantization using principal components for initialization of Kohonen SOFM [J]. IEEE Transactions on Image Processing, 2009, 11(4): 1633-1636.
  • 10Adams M D, Kossentini F. Reversible integer-to-integer wavelet transform for image compression: performance evaluation and analysis [J]. IEEE Transactions on Image Processing, 2007,9(6):1010-1024.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部