期刊文献+

采用旋转匹配的二进制局部描述子 被引量:11

Binary local descriptor based on rotative matching
原文传递
导出
摘要 针对二进制描述子主方向计算误差影响图像匹配正确性的问题,提出了一种旋转不变的二进制描述子构造和匹配方法。在以特征点为中心的同心圆周上等间隔选取采样点,按照旋转不变的模式选取采样点对进行灰度值比较,将比较结果连接成二进制串,作为区域的描述子。匹配时比较描述子在所有旋转模式中的汉明距离,取最小值作为描述子的距离,实现不依赖于主方向的旋转不变性。配合多尺度特征检测方法,将采样模式进行缩放,并对图像进行亚像素插值,实现尺度不变性。描述子匹配的实验结果表明,本文方法在旋转、尺度和光照变换下的匹配效果比当前依赖主方向的二进制描述子方法具有更高的鲁棒性。 Rotation invariance of existing binary local descriptors is achieved by constructing the descriptor relative to a dominant orientation, which is a major source of matching errors. A novel rotation-invariant binary local descriptor is pro- posed together with its matching method. Sampling points are equally spaced on circles concentric to the keypoint. The in- tensity comparison results of these sampling point pairs are concatenated into binary descriptor in a rotation-invariant ma- nner. By matching for all rotations, the descriptor is rotation-invariant. Combined with a multi-scale feature detector, scale invariance can also be achieved by sub-pixel sampling. Experimental results on standard evaluation datasets show that the proposed descriptor outperforms other state-of-the-art binary descriptors under rotation, scale or illumination transformation, as the error-prone dominant orientation calculation is avoided.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第10期1315-1321,共7页 Journal of Image and Graphics
基金 国家重点基础研究发展计划(973)基金项目(2011CB302501) 国家自然科学基金创新研究群体科学基金项目(60921002) 国家杰出青年科学基金项目(60925009) 北京市教委科技计划面上项目(KM201210028004)
关键词 图像匹配 局部特征 二进制描述子 旋转不变 image matching local feature binary descriptor rotation invariance
  • 相关文献

参考文献10

  • 1Lowe D G. Distinctive image features from scale-invariant key?points[J]. InternationalJournal of Computer Vision, 2004, 60(2): 91-110.[DOl: 1O.1023/B: VISI. 0000029664. 99615. 94J.
  • 2Bay H, Tuytelaars T, Gool L V. Surf: speeded up robust fea?tures[C]I IProceedings of the 9th European Conference on Com?puter Vision. Graz, Austria: Springer Berlin Heidelberg, 2006: 404417.[DOl: 1O.1OO7/11744023_32J.
  • 3Calonder M, Lepetit V, Strecha C, et al. Brief: binary robust independent elementary features[C]// Proceedings of the 11 th European Conference on Computer Vision. Heraklion, Crete, Creese , Springer Berlin Heidelberg, 2010: 778-792.[DOl: 10. 1007/978-3-642-15561-1_56].
  • 4Rublee E, Rahaud V, Konolige K, et al. ORB: an efficient al?ternative to SlIT or SURF[C]// Proceedings of the International Conference on Computer Vision. Barcelona: IEEE, 2011 : 2564- 2571.[DOl: 10. 1109/ICCV. 2011. 6126544J.
  • 5Leutenegger S, Chli M, Siegwart R Y. Brisk: binary robust in?variant scalable keypoints[C]// Proceedings of the International Conference on Computer Vision. Barcelona: IEEE, 2011: 2548- 2555.[DOl: 10. 1109/ICCV. 2011. 6126542].
  • 6Fan B, Wu F C, Hu Z Y. Aggregating gradient distributions into intensity orders: a novel local image descriptor] C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recogni?tion. Providence, RI: IEEE, 2011: 2377-2384.[DOl: 10. 1109/CVPR. 2011. 5995385].
  • 7Winder S AJ, Brown M. Learning local image descriptors[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN: IEEE, 2007: 1-8.[DOl : 10. 1109/CVPR. 2007. 382971].
  • 8Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pat?tern Analysis and Machine Intelligence, 2010, 32 ( 5): 815- 830.[DOl: 10. 1109/TPAMI. 2009. 77J.
  • 9Viola P,Jones M 1. Robust real-time face detection[J]. Interna?tionalJournal of Computer Vision, 2004, 57 ( 2 ): 137-154.[DOl: 10. 1023/B: VISI. 00000 13087. 49260. fbJ.
  • 10Mikolajczyk K, Schmid C. A performance evaluation of local de?scriptors[J]. IEEE Transactions on Pattern Analysis and Ma?chine Intelligence, 2005, 27 ( 10 ): 1615-1630.[DOl: 10. l109/TPAMI. 2005. 188].

同被引文献136

  • 1赵萌萌,曹建秋.基于边缘角点的SIFT图像配准算法[J].重庆交通大学学报(自然科学版),2013,32(4):721-724. 被引量:4
  • 2Lowe D G. Distinctive image features from scale-Invariant keypoint [J]. International Journal of Computer Vision, 2004, 60(2) : 91- 110. [DOI: 10. 1023/B:VISI. 0000029664. 99615.94].
  • 3Bay H, Ess A, Tuytelaars T, et al. SURF: speeded up robust features[ J]. Computer Vision and Image Understanding, 2008, 110 (3) : 346-359. [DOI : 10. 1016/j. cviu. 2007.09. 014 ].
  • 4Calonder M, Lepetit V, Ozuysal M, et al. BRIEF: computing a local binary descriptor very fast [ J ]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2012, 34 (7): 1281- 1298. [DOI: 10. l109/TPAMI. 2011.222].
  • 5Leutenegger S, Chli M, Siegwart R. BRISK: binary robust invar- iant scalable keypoint [ C ] //Proceedings of the 13th Internation- .al Conference on Computer Vision. Barcelona, Spain: IEEE Press, 2011: 2548-2555. [DOI: 10. 1109/ ICCV. 2011. 6126542 ].
  • 6Alabi A, Ortiz R, Vandergheynst P. FREAK: fast retina key- point[ C] //Proceedings of the 25th International Conference on Computer Vision and Pattern Recognition. Los Alamitos, USA: IEEE Press, 2012: 510-517. [ DOI: 10. 1109/CVPR. 2012. 6247715 ].
  • 7Yun C G, Sveflana L, Albert G, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale im- age retrieval[ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2013, 35 (12) : 2916-2929. [ DOI: 10.1109/TPAMI. 2012. 193 ].
  • 8Brown M, Gang H, Wind S. Discriminative learning of local im- age descriptors [ J ]. IEEE Transactions on Pattern Analysis and Machine Intdligence, 2011,33(1) :43-57. [ DOI: 10. 1109/T PAMI. 2010. 54].
  • 9Strecha C, Bronstein A, Bronstei M, et al. LDAHash : improved matching with smaller descriptors[ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2012, 43 ( 1 ) : 66-78. [DOI: 10. 1109/TPAMI. 2011. 103].
  • 10Trzcinski T, Christoudias M, Lepeti V. Learning image descrip- tors with boosting [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 597-610. [DOI:10. 1109/TPAMI. 2014. 2343961 ].

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部