期刊文献+

MSTAR图像的矩特征分析与多阈值分割 被引量:1

Moment feature analysis of MSTAR image and multiple thresholds based segmentation
原文传递
导出
摘要 图像分割是合成孔径雷达(SAR)图像自动目标识别应用中的基础性问题。定义并分析了运动、静止目标获取与识别(MSTAR)图像的矩特征,进而构造了多阈值处理策略,用于MSTAR图像的分割。首先研究了目标、阴影,以及背景区域统计特性,并确定了相应的数学模型描述,在此基础上给出了矩特征的定义,并分析了其基本特性。利用图像空间到矩特征空间的转换,显著增强了目标区域与阴影、背景区域的差异性,进而通过构造不同的阈值化规则,实现了MSTAR图像中目标、阴影和背景区域的分割。对MSTAR图像的处理结果表明,与恒虚警率(CFAR)、最大类间方差(OTSU)、模糊C均值(FCM)和马尔可夫随机场(MRF)等典型分割算法相比,本文算法不需进行噪声抑制,但在分割效果和鲁棒性等方面性能更好,同时,对多尺度、多目标MSTAR图像的分割也显示出良好的适应性。 Image segmentation is a fundamental step for SAR image based automatic target recognition (ATR) . A method based on moment feature and multiple thresholds is proposed for moving and stationary target a equisition and recognition (MSTAR) image segmentation. First, according to a comprehensive research of the statistics of MSTAR images, the math- ematical description models for target regions, shadows, and background regions are constructed respectivedly. Then, the moment feature is defined, followed by the analysis of its basic properties. By transforming the image into moment feature space, the difference between target region and the other two types of regions is significantly enhanced. Finally, a strategy with multiple thresholds is constructed for the segmentation. The experiment results with MSTAR dataset indicate that the algorithm presented here has advantages not only on the noise robustness, but also on the segmentation effect, as well as the processing efficiency over the common-used methods, such as OTSU, fuzzy C-means (FCM), Markov random field ( MRF), and constant false alarm rate (CFAR) . Furthermore, this new method also performs well in the segmentation of MSTAR images with various scales and multiple targets.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第10期1364-1373,共10页 Journal of Image and Graphics
关键词 MSTAR图像 图像分割 矩特征分析 多阈值 models for moving and stationary target acquisition and recognition (MSTAR) image image segmentation moment feature analysis multiple thresholds
  • 相关文献

参考文献19

  • 1Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images[M]. Norwood: Artech House, 1998.
  • 2刘洲峰,平庆伟,何佩琨,龙腾.高分辨率SAR图像中车辆群目标检测的研究[J].系统工程与电子技术,2003,25(5):604-607. 被引量:5
  • 3Mehmet S, Bulent S, Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electron?ic Imaging, 2004,13(1) :146-165.
  • 4张军,田昊,黄英君.利用高斯混合模型的SAR图像目标CFAR检测新方法[J].中国图象图形学报,2009,14(1):19-24. 被引量:7
  • 5田小林,焦李成,缑水平.加权空间函数优化FCM的SAR图像分割[J].西安电子科技大学学报,2008,35(5):846-852. 被引量:14
  • 6李旭超,朱善安.图像分割中的马尔可夫随机场方法综述[J].中国图象图形学报,2007,12(5):789-798. 被引量:64
  • 7Lankoande 0, Hayat M?M, Balu S. Segmentation ofSAR images based on Markov random field model[C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Hawaii: IEEE Press, 2005, 3 :2956-2961.
  • 8Gao G. Statistical modeling of SAR images: a survey[J]. Sen?sors, 2010, 10:775-795.
  • 9Greco M S, Gini F. Statistical analysis of high-resolution SAR ground clutter data[1J. IEEE Transactions on Geoscience and Remote sensing, 2007, 45 (3) :566-575.
  • 10Tison C, Nicolas 1 M, Tupin F, et aI. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sens?ing, 2004, 42(10) :2046-2057.

二级参考文献83

  • 1何友,RohlingH.有序统计恒虚警(OS-CFAR)检测器在韦布尔干扰背景中的性能[J].电子学报,1995,23(1):79-84. 被引量:14
  • 2李晶晶,王首勇,胡文琳.基于多杂波分布模型的自适应单元平均恒虚警检测[J].空军雷达学院学报,2005,19(3):4-7. 被引量:7
  • 3李响,韩萍,吴仁彪,杨国庆.一种基于Weibull分布的SAR图像分割方法[J].系统工程与电子技术,2007,29(5):677-679. 被引量:6
  • 4Yang Y N, Qiu Y X, Lu C. Automatic target classification experiments on the MSTAR SAR images[ A ]. In:Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on Self-Assembling Wireless Networks[ C ] , Washington, USA ,2005:2-7.
  • 5He K, Liu H W, Wu S J. Automatic target recognition based on MSTAR SAR image database[ A].In : Proceedings of the China-SAR Conference[ C] , Nanjing, China, 2005 : 412-417.
  • 6Rohling H. Radar CFAR thresholding in clutter and multiple target situations [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(4) :608-612.
  • 7Kuttikkad S, Chellappa R. Non-gaussian CFAR techniques for target detection in high resolution SAR images [ A]. In: Proceedings of IEEE International Conference on image Processing [ C ] , Austin, TX, November, 1995: 910-914.
  • 8Salazar J S, Hush D R. Statistical modeling of target and clutter in single-look non-polarimetric SAR imagery [ A]. In: Proceeding of IASTED International Conference on Signal and Image Processing [C], Las Vegas, USA, 1998:272-276.
  • 9Jyh-Shing Roger Jiang. Data Clustering and Pattern Recognition [ EB/ OL]. hnp://www. cs. nthu. edu. tw/-jiang.
  • 10Jeff A Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models [ R]. TR97021, Berkeley, CA, USA: international Computer Science Institute, Computer Science Division Department of Electrical Engineering and Computer Science, University of California, 1998.

共引文献84

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部