期刊文献+

GPCR跨膜螺旋的结构拓扑建模及其预测方法 被引量:2

Modeling the Structural Topology and Predicting the Three-Dimensional Structure for Transmembrane Helixes of GPCR
下载PDF
导出
摘要 7个α跨膜螺旋组成的螺旋束是G蛋白偶联受体的最主要拓扑特征,其三维结构的预测精度直接影响完整受体的三维结构预测、配体对接及功能分析的准确性.近期许多研究小组提出了各种方法,同时也遇到了一个共同的问题:采样时难以在7个跨膜螺旋结构的保守性与局部多样性之间获得平衡,其实质是未将两者统一到一个系统模型中.文中针对跨膜螺旋的空间结构特点,建立了兼顾保守性与多样性的结构拓扑模型,并利用该模型形成了4阶段的结构优化方法,试图获得采样广度与深度的平衡.同时,引入基于结构拓扑的能量项与约束,起到了优化评判标准和剪裁采样空间的作用,有效地预测了跨膜螺旋的三维结构.使用文中方法展开了3组验证实验,用8个已解构的目标分别与GPCRDOCK2010的参赛结果、知名结构预测工具Swiss和MODELLER进行了比较.与Swiss的比较中,文中方法有5个目标获得了更优的三维螺旋结构;与单模板、多模板的MODELLER的比较中,文中方法分别在6个目标与7个目标上取得了优势. G protein-coupled receptors are a class of proteins characterized by α-helix bundle composed of seven transmembrane helixes. The prediction accuracy of bundle's three-dimensional structure directly affects the accuracy of the entire receptor, the accuracy of ligand complex, and structure-based functional analysis. After establishing a reasonable structural topology mapping the structural characters of transmembrane helixes, this paper develops a four-stage optimization method, introduces a new energy item for evaluating the bundle structure and constraints for tailoring sampling space to predict the three-dimensional structure of transmembrane helixes. Three in silio experiments are performed to evaluate the ability of the method. After comparing with structures submitted by GPCRDOCK2010 participants, the well-known structure prediction tools Swiss and MODELLER against eight resolved GPCR targets, respectively, the results show the method proposed in this paper obtains better accuracy on five targets than Swiss and gets lower TM RMSD on six targets and seven targets than single-and multi-template MODELLER respectively.
出处 《计算机学报》 EI CSCD 北大核心 2013年第10期2168-2178,共11页 Chinese Journal of Computers
基金 国家自然科学基金"蛋白质柔性对接计算机模拟方法研究"(61170125) 江苏省自然科学基金"GPCR跨膜螺旋结构预测的计算方法研究"(BK20131154)资助
关键词 跨膜螺旋 G蛋白偶联受体 结构拓扑 约束 transmembrane helixes G protein coupled receptor structural topology restraint
  • 相关文献

参考文献27

  • 1Kontoyianni M, Liu Z. Structure-Based design in the GPCR target space. Current Medicinal Chemistry, 2012, 19 (4): 544-556.
  • 2Kratochwil N A, Gatti McArthur S, Hoener M C, et al. G protein coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: A surve. Current Topics in Medicinal Chemistry, 2011, 11 (15) : 1902-1924.
  • 3Beuming T, Sherman W. Current assessment of docking into GPCR crystal structures and homology models Successes, challenges, and guidelines. Journal of Chemical Information and Modeling, 2012, 52(12): 3263 -3277.
  • 4Wu H, Lt Q, Yang L Y, et al. CoREF.- A combined refine- ment approach for GPCRs backbone flexibility. Biomedical Engineering Applications, Basis and Communications, to appear.
  • 5Wu Hong-Jie, La Qiang, Wu Jin-Zheng, et al. A parallel ant colonies approach to de novo prediction of protein backbone in CASPS/9. Science China Information Sciences, 2012, 42(8): 1034 -1048.
  • 6Li Q, Xia X, Chen R, et al. When the lowest energy does not induce native structures: Parallel minimization of multi energy values by hybridizing searching intelligences. PLoS One, 2012, 7(9): e44967, doi: 10.1371/journal. pone. 004496.
  • 7Goldfeld D A, Zhu K, Beuming T, et a]. Success{u] predie tion of the intra and extracellular loops o{ {our G-protein coupled receptors. Proceedings of the National Academy o{ Sciences o{ the United States o{ America, 2011, 108(20): 8275 8280.
  • 8Zhang Y, DeVries M E, Skolnick J. Structure modeling of all identified G proteimcoupled receptors in the human genome. PLOS Computational Biology, 2006, 2(2): 88-99.
  • 9Yarov-Yarovoy V, Schonbrun J, Baker D. Multipass mem brane protein structure prediction using Rosetta. Proteins, 2006, 62(4): 1010 1025.
  • 10Barth P, Schonbrun J, Baker D. Toward high-resolution prediction and design of transmembrane helical protein struc tures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 15682- 15687.

同被引文献51

  • 1NGLESEJ, KOCH W J, CARON M G,et al. Isoprenylationin regulation of signal transduction by G-protein-coupled re-ceptor kinases[ J]. Nature, 1992,359(6391) :147-150.
  • 2ZHANGK,ZHANG J, GAO Z G,et al. Structure of the hu-man P2Y12 receptor in complex with an antithrombotic drug[J]. Nature, 2014,509(7498):115-118.
  • 3KRATOCHWILN A, GATTI-MCARTHUR S, HOENER MC,et al. G protein-coupled receptor transmembrane bindingpockets and their applications in GPCR research and drugdiscovery : a survey [J]. Current Topics in Medicinal Chem-istry, 2011,11(15):1902-1924.
  • 4XIAOX, MIN J L, WANG P,et al. iCDI-PseFpt: identifythe channel-drug interaction in cellular networking withPseAAC and molecular fingerprints[ J]. Journal of Theoreti-cal Biology, 2013,337:71-79.
  • 5KIM S, MALINVERNI J C, SLIZ P,et al. Structure andfunction of an essential component of the outer membraneprotein assembly machine[ J]. Science, 2007,317(5840):961-964.
  • 6PIERCE K L, PREMONT R T, LEFKOWITZ R J. Seven-transmembrane receptors [ J ]. Nature Reviews Molecular CellBiology, 2002,3(9) :639-650.
  • 7VASSILATISD K,HOHMANN J G, ZENG H,et al. The Gprotein - coupled receptor repertoires of human and mouse[J ]. Proceedings of the National Academy of Sciences,2003,100(8);4903-4908.
  • 8BERMANH M,BHAT T N,BOURNE PE,et al. The Pro-tein Data Bank and the challenge of structural genomics[ J].Nature Structural Biology, 2000,7 Suppl:957-959.
  • 9HORNF, BEITLER E, OLIVEIRA L,et al. GPCRDB in-fonnation system for G protein-coupled receptors [ J] . Nu-cleic Acids Research, 2003,31(1) :294-297.
  • 10XIAOX,MIN J L, WANG P,et al. iGPCR-drug: a webserver for predicting interaction between GPCRs and drugsin cellular networking[ J]. PLoS One, 2013,8(8) :e72234.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部