期刊文献+

超像素及其应用综述 被引量:8

Review about Superpixels and Its Applications
下载PDF
导出
摘要 超像素常常用于图像处理的预处理,它是利用像素间的特征相似度来进行分割的,在后续的图像处理过程中利用超像素获取的冗余信息将很大程度的降低算法的复杂性。文章阐述了超像素的发展及应用,介绍了几种获取超像素的算法,使读者能够直观的了解和应用超像素。 Superpixel is often used as preprocessing of image processing, which is a result of image segmentation based on the similarity of characteristics between pixels. The redundancy information acquired by superpixel can largely reduce the complexity of subsequent image processing. This paper describes the development and applications of superpixel, introduces several algorithms to obtain superpixels and helps readers understand superpixels and its application intuitively.
出处 《电脑与信息技术》 2013年第5期1-3,14,共4页 Computer and Information Technology
基金 自然科学基金项目(编号:61032003 61071100和61271172) 高等学校博士学科点专项科研基金(编号:20120185110030) 国家教育部回国人员科研启动基金联合资助
关键词 超像素 图像分割 图像处理 superpixel image segmentation image processing
  • 相关文献

参考文献14

  • 1Jianbo Shi, JIitendra Malik. Normalized cuts and image Segmentation[J]. PAMI, 2000:VOL. 22, NO. $, AUGUST 2000, pp.888-905.
  • 2PEDRO F F, DANIEL P H. Efficient graph-based image Segementation [J].IJCV ,2004:Volume 59, Issue 2, pp 167-181.
  • 3ALASTAIR P M, SIMON P, JONATHAN W, UMAR M, GRAHAM J. Superpixel Lattices[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008.
  • 4O. Veksler, Y. Buykov, and P. Mehrani. Superpixels and Supervoxels in an Energy Optimization Framework[C]. Proc. European Conf. Computer Vision, pp. 211-224, 2010.
  • 5Ming-Yu Liu, Tuzel O, RamalingamS, ChellappaR. Entropy Rate Superpixel Segmentation[C]. CVPR, pp.2097- 2104,2011.
  • 6Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficientalgorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine InteLligence, 13 ( 6 ):583-598, 1991.
  • 7D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 ( 5 ):603 -619, May 2002.
  • 8A. Vedaldi and Soatto, Quick Shift and Kernel Methods for Mode Seeking[C]. Proc. European Conf. Computer Vision, pp. 705-718, 2008.
  • 9Alex Levinshtein, Adrian Stere, Kiriakos N Kutulakos,David J Fleet, Sven J Dickinson, Kaleem Siddiqi.Turbopixels: Fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),pp.2290 -2297,2009.
  • 10Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk.SLIC Superpixels [R].EPFL Technical Report no. 149300, June 2010.

二级参考文献36

  • 1ACHANTA R, SHAJI A. SLIC superpixels compared to state-of-the-art superpixel methods [ J ]. IEEE Transactions on PAMI, 2012,34( 11 ) :2274 - 2282.
  • 2LEIBE B, MIKOLAJCZYK K, SCHIELE B. Efficient clustering and matching for object class recognition [ C ]//Proceed- ings of the British Madine Vision Conference. BMVA Press: British Machine Vision Association, 2006:789-798.
  • 3ROBERTO J, DANIEL O. Fast reciprocal nearest neighbors clustering [J]. Signal Process, 2012,92( 1 ) :270-275.
  • 4SHI J, MALIK J. Normalized cuts and image segmentation [ J ]. IEEE Trans on PAMI,2000,22 (8) :888-905.
  • 5COMANICIU D. MEAN Shift:A robust approach toward feature space analysis [ J]. IEEE Trans on PAMI, 2002,5(24) : 603-619.
  • 6ARBELAEZ P, MAIRE M, FOWLKES C. Contour detection and hierarchical image segmentation [ J ]. IEEE Trans on PAMI, 2011,33(5) : 898-916.
  • 7UNNIKRISHNAN R, PANTOFARU C, HEBERT M. Toward objective evaluation of image segmentation algorithms [J].IEEE Trans on PAMI, 2007, 29 (6) : 929-944.
  • 8Boykov Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N - D images [ C ] // IEEE International Conference on Computer Vision and Pattern Recognition. [ s. 1. ] : IEEE, 2001:731 -738.
  • 9Rother C, Kolmogorov V, Blake A. Grabcut -interactive foreground extraction using iterated graph cuts[ J ]. ACM Transactions on Graphics, 2004, 23(3) : 309 -314.
  • 10Li Yin, Sun Jian, Tang Chi -keung, et al. Lazy snapping[ J]. ACM Transactions on Graphics, 2004, 23 (3) : 303 -308.

共引文献21

同被引文献86

  • 1苏金玲,王朝晖.基于Graph Cut和超像素的自然场景显著对象分割方法[J].苏州大学学报(自然科学版),2012,28(2):27-33. 被引量:7
  • 2Xiang Deliang, Tang Tao, Zhao Lingjun, et al. Superpixel Generating Algorithm Based on Pixel Intensity and Location Similarity for SAR Image Classification [ J ]. Geoscience and Remote Sensing Litters ,2013,10( 6 ) : 1414-1418.
  • 3Comaniciu D,Meer P. Mean Shift:A Robust Approach Toward Feature Space Analysis[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) :603-619.
  • 4Vedaldi A, Soatto S. Quick Shift and Kernel Methods for Mode Seeking[ C ]//Proceedings of ECCV' 08. Berlin, Germany : Springer-Verlag, 2008 : 705-718.
  • 5Achanta R, Shaji A, Smith K, et al. SLIC Superpixels Compared to State-of-the-art Superpixel Methods [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2012,34( 11 ) :2274-2281.
  • 6Shi Jianbo, Malik J. Normalized Cuts and Image Segmentation [J] IEEE Transactions on Pattern Analysis and Machine Intelligence ,2000,22( 8 ) :888-905.
  • 7Felzenszwalb P F, Huttenlocher D P. Efficient Graph- based Image Segmentation [ J ]. International Journal of Computer Vision, 2004,59 ( 2 ) : 167-181.
  • 8Li X, Sahbi H. Superpixel-based Object Class Segmenta- tion Using Conditional Random Fields [ C]//Pro- ceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C. , USA: IEEE Press,2011:1101-1104.
  • 9Sochen N, Kimmel R, Malladi R. A General Framework for Low Level Vision [ J ]. IEEE Transactions on Image Processing, 1998,7 ( 3 ) : 310-318.
  • 10Lukac R, Smolka B, Plataniotis K N, et al. Vector Sigma Filters for Noise Detection and Removal in Color Images[ J]. Journal of Visual Communication and Image Representation ,2006,17 ( 1 ) : 1-26.

引证文献8

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部