期刊文献+

有界随机噪声激励下碰撞系统的最大Lyapunov指数 被引量:3

Maximal Lyapunov exponent of a single-degree-of-freedom linear vibroimpact system to a boundary random parametric excitation
下载PDF
导出
摘要 为了研究单自由度线性单边碰撞系统在有界随机噪声参数激励下的最大Lyapunov指数和稳定性问题,用Zhuravlev变换将碰撞系统转化为连续的非碰撞系统,然后用随机平均法得到了关于慢变量的随机微分方程。在没有随机扰动的情形下,给出了系统最大Lyapunov指数的值;在有随机扰动的情形下,通过求解FPK方程得到了系统的不变测度和最大Lyapunov指数的解析表达式。研究结果表明:随着系统阻尼项、有界随机噪声带宽、碰撞恢复系数的减少和有界随机噪声振幅的增大,最大Lyapunov指数增加;当随机激励的中心频率等于系统固有频率的两倍时,系统的Lyapunov指数达到最大,从而使系统变得更不稳定。根据系统的Lyapunov指数得到了系统稳定的充分必要条件,即当Lyapunov指数大于零时系统几乎必然不稳定,而当Lyapunov指数小于零时系统几乎必然稳定,Lyapunov指数等于零为系统的稳定性分叉点,并讨论了相应的稳定性分叉问题。 The resonance response and maximal Lyapunov exponent of single-degree-of-freedom linear vibroimpact oscillator with a one-sided barrier to boundary random parametric excitation are investigated.The analysis is based on a special Zhuravlev transformation,which reduces the system to one without impacts,or velocity jumps,thereby permitting the applications of asymptotic averaging over the period for slowly varying random process.The averaged equations are solved exactly and value of the maximal Lyapunov exponent is obtained in the case without random disorder.The FPK equations are solved exactly and the explicit asymptotic formulas for the maximal Lyapunov exponent and invariant measures are obtained for the case with random disorder.Theoretical analyses show that the maximal Lyapunov exponent will increase when the damping of the system,bandwidth of random excitation and restitution factor decrease.The maximal Lyapunov exponent will increase when the magnitudes of random excitation increase.The maximal Lyapunov exponent will reach the maximum values when the excitation frequency equals two times of the system frequency,therefore make the system become more unstable.The system will be almost sure stable(or unstable) if the maximal Lyapunov exponent is negative(or positive),therefore the stable bifurcation will be occur if the maximal Lyapunov exponent equal to zero and the stochastic stable bifurcation point can be obtained.
出处 《应用力学学报》 CAS CSCD 北大核心 2013年第5期752-755,806,共4页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10772046 50978058) 广东省自然科学基金(7010407 10252800001000000 05300566) 全国优秀博士学位论文作者专项资金(200954)
关键词 线性碰撞系统 参数主共振响应 随机平均法 最大LYAPUNOV指数 linear vibroimpact system,parametric principal resonance responses,random averaging method,maximal Lyapunov exponent
  • 相关文献

参考文献19

  • 1Brogliato B. Nonsmooth mechanics[M]. London: Springer-Verlag 1999.
  • 2Metrikyn V S. On the theory of vibro-impact devices with randomly varying parameters[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 1970, 13: 4-8. (in Russian).
  • 3Stratunovich R L. Topics in the theory of random noise(volume 1)[M]. New York: Gordon and Breach Science Publishers Inc, 1963.
  • 4Jing H S, Shell K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibroimpact system[J]. Journal of Sound and Vibration, 1990, 141: 363-373.
  • 5Fang Jinqian, Xu Wei, Rong Haiwu, et al. Stochastic response ofDuffmg-Van der Pol vibro-impaet system under additive and multiplieative random excitations[J]. International Journal of Non-LinearMechanics, 2009, 44(1): 51-57.
  • 6Zhuravlev V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1967, 11: 23-27.
  • 7Iourtchenko D V, Dimentberg M F. Energy balance for random vibrations of piecewise-conservative systems[J]. Journal of Sound and Vibration, 2001, 248: 913-923.
  • 8Feng Q, He H. Modeling of the mean Poincar6 map on a class of random impact oscillators[J]. European Journal of Mechanics Series A: Solids, 2003, 22: 267-281.
  • 9Iourtchenko D V, Song L L. Numerical investigation of a response probability density fimction of stochastic vibroimpact systems with inelastic impacts[J]. International Journal of Non-Linear Mechanics, 2006, 41: 447-455.
  • 10Dimentberg M F, Gaidai O, Naess A. Random vibrations with strongly inelastic impacts: Response PDF by the path integration method[J]. International Journal ofNon-Linear Mechanics, 2009, 44: 791-796.

同被引文献31

  • 1金俐,陆启韶.非光滑动力系统Lyapunov指数谱的计算方法[J].力学学报,2005,37(1):40-47. 被引量:30
  • 2李爽,徐伟,李瑞红.Duffing-van der Pol系统的随机分岔[J].力学学报,2006,38(3):429-432. 被引量:4
  • 3Metrikyn V S. On the theory of vibro-impact devices with randomly varying parameters[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 1970, 13: 4-8.
  • 4Stratonovich R L. Topics in the theory of random noises[M]. 2rd ed. New York: Gordon and Breach, 1967.
  • 5Jing H S, Shan K C. Exact stationary solutions of the random response of a single-degree-of-freedom vibroimpact system[J]. Journal of Sound and Vibration, 1990, 141(3): 363-373.
  • 6Jing H S, Young M. Random response of a single-degree-of-freedom vibro-impact system with clearance[J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 789-798.
  • 7Huang Z L, Lin Z H, Zhu W Q. Stationary response of multi-degree-of-freedom vibro-impact systems under white noise excitations[J]. Jottrttal of Sound and Vibration, 2004, 275(1/2): 223-240.
  • 8Feng Jinqian, Xu Wei, Rong Haiwu, et al. Stochastic response of Duffing-Van der Pol vibro-impaet system under additive and multiplieative random excitations[J]. International Journal of Non-Linear Mechanics, 2009, 44(1): 51-57.
  • 9Zhuravlcv V F. A method for analyzing vibration-impact systems by means of special functions[J]. Mechanics of Solids, 1976, 11: 23-27.
  • 10Iourtchenko D V, Dimantberg M F. Energy balance for random vibrations of piecewisc-conservative systems[J]. Journal of Sound andVibration, 2001, 248(5): 913-923.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部