摘要
CBCT scanners have been widely used in angiography,radiotherapy guidance,mammography and oral maxillofacial imaging.To cut detector size,reduce manufacturing costs and radiation dose while keeping a reasonable FOV,the flat panel detector can be placed off-center horizontally.This scanning configuration extends the FOV effectively.However,each projection is transversely truncated,bringing errors and artifacts in reconstruction.In this paper,a simple but practical method is proposed for this scanning geometry based on truncation compensation and the modified FDK algorithm.Numerical simulations with jaw phantom were conducted to evaluate the accuracy and practicability of the proposed method.A novel CBCT system for maxillofacial imaging is used for clinical test,which is equipped with an off-center small size flat panel detector.Results show that reconstruction accuracy is acceptable for clinical use,and the image quality appears sufficient for specific diagnostic requirements.It provides a novel solution for clinical CBCT system,in order to reduce radiation dose and manufacturing cost.
CBCT scanners have been widely used in angiography, radiotherapy guidance, mammography and oral maxillofacial imaging. To cut detector size, reduce manufacturing costs and radiation dose while keeping a reasonable FOV, the flat panel detector can be placed off-center horizontally. This scanning configuration extends the FOV effectively. However, each projection is transversely truncated, bringing errors and artifacts in reconstruction. In this paper, a simple but practical method is proposed for this scanning geometry based on truncation compensation and the modified FDK algorithm. Numerical simulations with jaw phantom were conducted to evaluate the accuracy and practicability of the proposed method. A novel CBCT system for maxillofacial imaging is used for clinical test, which is equipped with an off-center small size flat panel detector. Results show that reconstruction accuracy is acceptable for clinical use, and the image quality appears sufficient for specific diagnostic requirements. It provides a novel solution for clinical CBCT system, in order to reduce radiation dose and manufacturing cost.
基金
Supported by National Key Technology R&D Program of the Ministry of Science and Technology(No.2012BAI07B05)
关键词
CT系统
检测器
CB
图像重建
CT扫描仪
平板探测器
对称
辐射剂量
Cone beam CT, Off-center detector, Image reconstruction, Field of view, Projection truncation, Central artifacts