摘要
针对混合蛙跳算法求解优化问题时,进化后期种群多样性降低,算法极易陷入局部最优的问题,借鉴模拟退火算法中的Metropolis判别准则改进混合蛙跳算法中的族群内部寻优能力.同时,在族群之间构建一个单向环迁移机制,从而增强算法后期跳出局部最优的能力.对几种典型函数以及TSP问题的测试结果表明:基于模拟退火的混合蛙跳算法的全局搜索能力有了显著提高,并能有效避免陷入局部最优问题.
When shuffled frog leaping algorithm(SFLA) was used in solving the optimization problems, diversity of species was decreased in the later evolution period, the algorithm could easily fall into local optimum. In response to these problems, using metropolis criterion of simulation annealing (SA) algorithm for reference in order to improve the ability of optimization in each ethnic group. Besides, a one-wayring migration mechanism was proposed to strengthen the ability to escape from local optimum. The experimental results showed that the ability of seeking the global excellent result was superior to original SFLA, and could void the local convergence problem effectively.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2013年第5期25-31,共7页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(71171151)
河南省教育厅自然科学研究计划基金资助项目(2007520068)
关键词
优化问题
混合蛙跳算法
模拟退火
单向环
optimization problems
shuffled frog leaping algorithm
simulation annealing
one-way-ring