期刊文献+

基于模拟退火的单向环蛙跳算法在优化问题中的应用 被引量:1

One-way-ring shuffled frog leaping algorithm based on simulated annealing and its application to optimization problems
下载PDF
导出
摘要 针对混合蛙跳算法求解优化问题时,进化后期种群多样性降低,算法极易陷入局部最优的问题,借鉴模拟退火算法中的Metropolis判别准则改进混合蛙跳算法中的族群内部寻优能力.同时,在族群之间构建一个单向环迁移机制,从而增强算法后期跳出局部最优的能力.对几种典型函数以及TSP问题的测试结果表明:基于模拟退火的混合蛙跳算法的全局搜索能力有了显著提高,并能有效避免陷入局部最优问题. When shuffled frog leaping algorithm(SFLA) was used in solving the optimization problems, diversity of species was decreased in the later evolution period, the algorithm could easily fall into local optimum. In response to these problems, using metropolis criterion of simulation annealing (SA) algorithm for reference in order to improve the ability of optimization in each ethnic group. Besides, a one-wayring migration mechanism was proposed to strengthen the ability to escape from local optimum. The experimental results showed that the ability of seeking the global excellent result was superior to original SFLA, and could void the local convergence problem effectively.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2013年第5期25-31,共7页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(71171151) 河南省教育厅自然科学研究计划基金资助项目(2007520068)
关键词 优化问题 混合蛙跳算法 模拟退火 单向环 optimization problems shuffled frog leaping algorithm simulation annealing one-way-ring
  • 相关文献

参考文献8

二级参考文献49

  • 1康立山.非数值并行算法(第一册)-模拟退火算法[M].北京:科学出版社,1998..
  • 2袁蔚平.数值分析[M].南京:东南大学出版社,1998..
  • 3ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Engineering Informatics, 2005,19(1 ):43-53.
  • 4EUSUFF M M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management, 2003,129 ( 3 ) : 210-225.
  • 5LIONG S Y, ATIQUZZAMAN M. Optimal design of water distribution network using shuffled complex evolution [ J ]. The Institution of Engineers, 2004,44( 1 ) :93-107.
  • 6EUSUFF M M. Water resources decision making using meta-heuristic optimization methods[ D ]. Tucson: University of Arizona, 2004.
  • 7ELBEHAIRY H, ELBELTAGI E, HEGAZY T, et al. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [J ]. Computer-Aided Civil and Infrastructure Engineering, 2006,21 (8) :561-572.
  • 8WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :67-82.
  • 9BIRBIL S I, FANG S C. An electromagnetism-like mechanism for global optimization[ J]. Journal of Global Optimization, 2003,25 (3) :263-282.
  • 10Haykin S 2005 IEEE J. Sel. Area. Comm. 23 201.

共引文献472

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部