期刊文献+

广义二值形态算子的研究

Study on generalized binary morphology operator
下载PDF
导出
摘要 基于布尔函数与形态算子关系,用秩函数取代结构化映射中的布尔函数,通过选取不同秩函数阈值的方法,对二值形态变换进行扩展和推广。提出了具有调节秩函数阈值的广义二值形态变换理论,以期为形态算子的应用以及新算法的研究提供新的思路。 Based on the relationship between the Boolean functions and morphological operators, the Boolean functions in the structural mapping are replaced by the rank function. By choosing the threshold of the rank function, the binary morphological transforms are extended. We hope the generalized morphological transform theory with the adjustable rank function threshold can provide an innovative idea for the researches of morphological operators and algorithm.
作者 罗敬 张瑜
出处 《长春工业大学学报》 CAS 2013年第4期463-469,共7页 Journal of Changchun University of Technology
基金 中南民族大学研究生学术创新基金资助项目(2013sycxjj087)
关键词 形态腐蚀 形态膨胀 广义形态变换 秩函数 morphological dilations morphological erosion generalized morphology rank function.
  • 相关文献

参考文献7

  • 1段汕,罗敬,徐文,贺兴.布尔函数与形态算子关系的研究[J].中南民族大学学报(自然科学版),2013,32(2):106-110. 被引量:2
  • 2Heijmans H. Morphological image operator[M]. Boston: Academic Press, 1994 : 17-102.
  • 3Shin F R. Image processing and mathematical mor- phology fundamentals and applications [M]. New York: CRC Press,2009:5-8.
  • 4Kresch R. Mathematical morphology on complete semilattices and its application to image processing [J]. Fund Inform,2000,41(1/2) :33-56.
  • 5Haralick R M, Sternberg S R, Zhuang X H. Image alysis using mathematical morphology [J]. IEEE Transactions on PAMI, 1987,9 (4) : 69-82.
  • 6Wang D M, Labit C. A lossless morphological sam- pling scheme for segmented image compression[C] // Proc of Internation Conference on Image Process- ing. Washington DC: IEEE Computer Society,1995 (1) :23-25.
  • 7史东承,于明会.基于数学形态学滤波的灰度图像边缘检测[J].长春工业大学学报,2008,29(3):283-287. 被引量:8

二级参考文献14

  • 1陈虎,周朝辉,王守尊.基于数学形态学的图像去噪方法研究[J].工程图学学报,2004,25(2):116-119. 被引量:54
  • 2柳国普,张桂林,张宁,杜峥.基于FPGA的灰度形态学滤波器实现[J].微型机与应用,2004,23(5):22-23. 被引量:6
  • 3Edward Dougherty R. Optimal mean-square N-observation digital morphological filters[J]. Optimal Banary Filters, 1992,55 ( 1 ) : 36-54.
  • 4Rafael C, Gonzalez Richard E. Woods digital image processing second edition[M].北京:电子工业出版社,2003:420-428.
  • 5Goutsias J, Schonfeld D. Morphological representation of discrete and binary image [ J ]. IEEE Transactions on Signal Processing, 1991,39 (6) : 1369-1379.
  • 6Heijmans H. Morphological image operator [ M ]. Boston: Academic Press, 1994:17-102.
  • 7Shin F R. Image processing and mathematical morphology fundamentals and applications [ M ]. New York: CRC Press, 2009:5-8.
  • 8Kresch R. Mathematical morphology on complete semilattices and its application to image processing [ J ]. Fund Inform, 2000, 41(1-2) :33-56.
  • 9Heijmans H, Boomgaard R. Algebraic framework for linear and morphological scale-space [ J ]. Visual Communication and Image Representation , 2002,13(1-2) : 269-301.
  • 10Heijmans H , Keshet R. First steps toward self-dual morphology [ C]//IEEE. IEEE Int' 1 Corf on Image Processing. Vancouver : IEEE , 2000(2) :934-937.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部