摘要
提出一种基于语义的领域知识推荐方法,通过判断用户输入类型,分别进行概念相似度和短句相似度的计算。其中概念相似度计算是通过计算概念的信息内容值进行的,短句相似度计算分为语义相似度和句法结构相似度。实验结果表明,该方法有效地对用户的查询请求进行概念扩充,提高了搜索的查全率与查准率。
With the explosive growth of web resource, it is difficult for keyword-based knowledge recommendation to meet the professional needs of users. In this paper, a knowledge recommandation calculation algorithm based on semantic similarity method is proposed. According to the style of user's input, we calculate similarity of concepts based on information content and similarity of sentences based on semantic similarity and structure similarity. Experiment results show that the user's inquiry request has been expanded its concept effectively, and the recall and accuracy of retrieval have been improved obviously.
出处
《复杂系统与复杂性科学》
EI
CSCD
北大核心
2013年第3期50-54,共5页
Complex Systems and Complexity Science
基金
北京市教委科技发展计划面上项目(KM200910011007)
北京市属高等学校人才强教计划资助项目(PHR201108075)
关键词
信息内容
相似度
语义
知识推荐
information content
similarity
semantic
knowledge recommendation