期刊文献+

基于SURF算法的无人机航空图像自动配准研究 被引量:1

Automatic registration of unmanned aerial vehicle images based on SURF operator
下载PDF
导出
摘要 针对实时性要求中SIFT特征配准算法耗时长的缺点,本文将SURF(Speeded Up Robust Feature,即加速鲁棒特征)算法应用于无人机航空图像的自动配准问题中。首先利用Hessian检测子检测特征点,再通过粗匹配和细匹配得到匹配点对,最后执行几何变换完成对图像的配准。通过与SIFT(Scale Invariant Feature Transform,即尺度不变特征变换)配准方法进行对比,结果表明SURF算法在满足精度的前提下具有比SIFT算法计算量小、速度快的优点,有一定的理论和应用价值。 To overcome the shortcoming of SIFT registration algorithm, SURF operator is introduced into automatic registration of UAV aerial images. Firstly, the feature points are extracted through the Hessian detector. Secondly, matched points are selected through the coarse matching and the fine matching. Finally, the geometry transform is taken to complete the registration. An real experiment is performed, in which the proposed method is compared with the automatic registration method based on SIFT. The results show that SURF method meets the needs of accuracy and is faster than SIFT as well. So, our new method is valuable in both theory and practice.
出处 《工程勘察》 2013年第10期49-52,57,共5页 Geotechnical Investigation & Surveying
基金 国家973计划项目(Y070070070) 中科院战略先导专项子课题(Y1Y02230XD) 中科院创新项目(09Y01500KB)
关键词 SURF算法 图像配准 Hessian检测子 几何变换 SIFT算法 SURF algorithm image registration Hessian detector geometry transform SIFT algorithm
  • 相关文献

参考文献12

  • 1H Li, B. S. Manjunath, S. K Mitta, Multi-sensor Image Fusion Using the wavelet transform [ J]. Graphical Model and Image processing, 1995, 57 (3) : 235 -245.
  • 2Olicer Rocking, Thomas Fechner, pixel-level iamge fusion: The case of Image Sequence, SPIE conf on signal processing, sensor Fusion and Target Recognition VII [ C ]. 1998, 33 (74): 378 -387.
  • 3LI Hui, etal. A Contour-Based Approach to Muhisensor Image Registration [ J]. IEEE Transaction on Image Processing, 1995, 4 (3).
  • 4LOWED G. Object recognition from local scale-invariant features [ C ] //International Conference on Computer Vision , Corfu, Greece Sept, 1999: 1150~1157.
  • 5高超,张鑫,王云丽,王晖.一种基于SIFT特征的航拍图像序列自动拼接方法[J].计算机应用,2007,27(11):2789-2792. 被引量:36
  • 6李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 7张朝伟,周焰,吴思励,林洪涛.基于SIFT特征匹配的监控图像自动拼接[J].计算机应用,2008,28(1):191-194. 被引量:39
  • 8BAY H, TUVTELLARS T, GOOL L Van. SURF: speeded up robust features [ C ] //Proceedings of the European Conference on Computer Vision, 2006:404-417.
  • 9VILLA P, JONES M. Rapid object detection using a boosted cascade of simple [ C ]. Computer Vision and Pattern Recognition, Proceeding of the 2001 IEEE Computer Society Conference On, Kauai Marriott, Hawaii, CVPR, 2001:511-518.
  • 10BROWN M, LOWED. Invariant features from interest point groups [C] //BMVC, 2002: 1-10.

二级参考文献31

  • 1仵建宁,郭宝龙,冯宗哲.一种基于兴趣点匹配的图像拼接方法[J].计算机应用,2006,26(3):610-612. 被引量:32
  • 2Brown L G.A Survey of Image Registration Techniques[J].ACM Computing Survey,1992,24:325-376.
  • 3Zitová B,Flusser J.Image Registration Methods:A Survey[J].Imaging and Vision Computing,2003,21:977-1000.
  • 4Moigne J L,Campbell W J,Cromp R F.An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features[J].IEEE Trans.Geoscicence and Remote Sensing,2002,40(8):1849-1864.
  • 5Kennedy R E,Cohen W B.Automated Designation of Tie-points for Image-to-image Coregistration[J].International Journal of Remote Sensing,2003,24(17):3467-3490.
  • 6Bentoutou Y,Taleb N,Kpalma K,et al.An Automatic Image Registration for Application in Remote Sensing[J].IEEE Trans.Geoscience and Remote Sensing,2005,43(9):2127-2137.
  • 7Mikolajczyk K,Schmid C.A Performance Evaluation of Local Descriptors[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630.
  • 8Lowe D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9Brown M,Lowe D G.Recognising Panoramas[A].In Proceedings of the 9th International Conference on Computer Vision(ICCV03)[C].Nice,October,2003.
  • 10Schaffalitzky F,Zisserman A.Multi-view Matching for Unordered Image Sets,or How do I Organize my Holiday Snaps?[A].Proceedings of the 7th European Conference on Computer Vision(ECCV02)[C].2002.

共引文献217

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部