期刊文献+

Global L^2 Stability of the Nonhomogeneous Incompressible Navier–Stokes Equations

Global L^2 Stability of the Nonhomogeneous Incompressible Navier–Stokes Equations
原文传递
导出
摘要 In this paper, the problem of the global L^2 stability for large solutions to the nonhomogeneous incompressible Navier-Stokes equations in 3D bounded or unbounded domains is studied. By delicate energy estimates and under the suitable condition of the large solutions, it shows that if the initial data are small perturbation on those of the known strong solutions, the large solutions are stable. In this paper, the problem of the global L^2 stability for large solutions to the nonhomogeneous incompressible Navier-Stokes equations in 3D bounded or unbounded domains is studied. By delicate energy estimates and under the suitable condition of the large solutions, it shows that if the initial data are small perturbation on those of the known strong solutions, the large solutions are stable.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第11期2087-2098,共12页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.11171229) supported by National Natural Science Foundation of China (Grant Nos.11171229,11231006 and 11228102) Funds of Beijing Education Committee supported by Funding Project for Academic Human Resources Development in Institution of Higher Learning under the Jurisdiction of Beijing Municipality (Grant No.201108091)
关键词 Nonhomogeneous incompressible Navier-Stokes equations strong solutions STABILITY Nonhomogeneous incompressible Navier-Stokes equations, strong solutions, stability
  • 相关文献

参考文献10

  • 1Abidi, H., Gui, G., Zhang, P.: On the decay and stability to global solutions of the 3D inhomogeneous Nabier Stokes equations. Comm. Pure Appl. Math., 64(6), 832-881 (2011).
  • 2Choe, H. J., Kim, H.: Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids. Comm. Partial Differential Equations, 28, 1183-1201 (2003).
  • 3Kazhikov, A. V.: Resolution of boundary value problems for nonhomogeneous viscous fluids. Dokl. Akad. Nauh, 216, 1008-1010 (1974).
  • 4Li, X. J., Jiu, Q. S.: Global L2 stability of large solutions to the 3D Boussinesq Equations. Acta Math. Sin., Chin. Series, 53(1),171 186 (2010).
  • 5Lions, P. L.: Mathematical topics in fluid mechanics, Vol. 1: Incompressible models. In: Oxford Lecture Series in Mathematics and Its Applications, Vol. 10, 1996.
  • 6Ponce, G., Rache, R., Sideris, T. C., et al.: Global stability of large solutions to the 3D Navier-Stokes equations. Comm. Math. Phys., 159, 329-341 (1994).
  • 7Simon, J.: Ecoulementd'un fluide nonhomogne avec une densit@ initiale s'annulant. C. R. Acad. Sci. Paris, 15, 1009-1012 (1978).
  • 8Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure. SIAM J. Math. Anal., 21(5), 1093 1117 (1990).
  • 9Simon, J.: Sur les fluids visqueux incompressibles et non homognes. C.R. Acad. Sci. Paris, 309, 447-452 (1989).
  • 10Zhao, C. S., Li, K. T.: Global L2 stability of large solutions to the 3D MHD Equations. Ac$a Math. Sin., Chin. Series, 44(6), 961 976 (2001).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部