期刊文献+

无网格伽辽金法节点分布求解精度的研究

Research on Nodes Factors Affecting Computational Precision of Element-free Galerkin Method
下载PDF
导出
摘要 基于移动最小二乘法的无网格伽辽金法(EFG)计算精度的影响因素有很多。为了分析无网格伽辽金法对节点布置的影响,文中通过分析经典的悬臂梁问题,定义了一个能量范数作为误差指标,用Matlab程序开发了无网格法计算程序。研究了离散节点的布置方法及节点个数对无网格法伽辽金法求解精度的影响。考察了均匀布点法及随机布点法情况下的无网格法的计算精度,提出了两种布点方法结合起来应用的混合布点方法,得出了一些有益的结论。 Computational precision of MLS-based EFG is affected by many factors. In order to analyze the influence of element-free Galerkin method for nodes distribution,by analyzing the classical cantilever beam problem,define an energy norm as error index,simulta-neously,develop element-free computational program based on Matlab. Furthermore,study the layout method and the impact on computa-tional precision of element-free Galerkin method by node number. Also,investigate the computational precision and efficiency of EFG under uniform distribution method and the method of random distribution. Propose a mixed combination of the two distribution methods. The above analysis gives some useful conclusions.
出处 《计算机技术与发展》 2013年第10期75-79,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(51209079) 中央高校基本科研业务费资助项目(2009B15814)
关键词 无网格 伽辽金法 节点布置 计算精度 element-free Galerkin method distribution of nodes computational precision
  • 相关文献

参考文献15

  • 1Belytschko T, Lu Y Y, Gu L. Element-free Galerkinmethod [J]. International Journal for Numerical Method in Engineer- ing, 1994,37:229-256.
  • 2Wang J G, Liu G R. A point interpolation meshless method based on radial basis functions [ J ]. Int J Numer Meth Eng, 2002,54(11 ) :1623-1648.
  • 3Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [ J ]. Int J Numer Methods Eng, 1995,20:1081 - 1106.
  • 4Atluri S N, Shen S P. The meshless local Petrov- Galerkin (MLPG) method [ M ]. Encino, USA: Tech Science Press, 2002.
  • 5Liu G R, Gu Y T. A local radial point interpolation method ( LR-PIM ) for free vibration analysis of 2-D solids [ J ]. Jour- nal of Sound and Vibration,2001,246( 1 ) :29-46.
  • 6Liu G R, Gu Y T. A truly meshless method based on the strong -weak form [ C ]//Proceeding of the 1st Asian Workshop in Meshfree Methods. Singapore : [ s. n. ] ,2002:259-261.
  • 7Krok J, Orkisz J. A unified approach to the FE generalizedvariational FD method for nonlinear mechanics, concept and numerical approach[ M ]. [ s. 1. ] : Springer-Verlag, 1989:353 -362.
  • 8Ofiate E, Perazzo F, Miquel J. A finite point method for elastic- ity problems [ J ]. Computers and Structures, 2001,79 : 2151 - 2163.
  • 9Liu G R, Gu Y T. A meshfree method:Meshfree weak-strong (MWS) form method ,for 2-D solids [ J ]. Computational Me- chanics,2003,33 ( 1 ) :2-14.
  • 10Liu W K. Moving least square reproduce kernel method part i: methodology and convergence [ J ]. Computer Methods in Ap- plied Mechanics Engineering, 1997,143 (10) :422-433.

二级参考文献45

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部