期刊文献+

基于优化的多核学习方法的Web文本分类的研究

Research of Web Document Classification Based on Optimized Multiple Kernel Learning Method
下载PDF
导出
摘要 Web文本分类技术是数据挖掘中一个重要研究领域,为了能从海量信息中快速检索遍布网络各处的文档,需要提高Web文本分类技术的性能。多核学习方法是当前机器学习领域的一个热点,可以显著提升分类识别能力和学习推广能力,而核方法是解决高维非线性模式分析的有效方法之一。利用多核代替单核能增强决策函数的可解释性并获得更优的性能。文中分析研究了一种基于优化的多核学习的支持向量机,在此基础上结合通用的Web文本分类模型,提出了一种基于多核学习支持向量机的Web分类方法。通过实验测试表明,该方法具有良好的效果,对比一致组合的多核学习方法,所提出的方法具有较高的准确率。 Web document classification has been considered as an important research field in data mining,it's necessary to improve the performance of technique of Web document classification for quickly retrieving the documents from the massive information spread all o-ver the network. Multiple-kernel learning is a focus in current machine learning community,which is able to develop the capability of classification and learning extension,while kernel method is one of effective approaches for solving high dimension and non-linear pattern analysis. By using the advantage of multiple kernel can boost interpretability of decision function and obtain better performance. In this paper,propose a Web document classification based on multiple kernel learning after a research of a SVM based on multiple kernel learn-ing. According to the result of the experiment,this approach presented in this paper has high efficiency and more accurate rate compared with simple consistent combination multiple kernel learning method.
作者 江伟 潘昊
出处 《计算机技术与发展》 2013年第10期80-82,86,共4页 Computer Technology and Development
基金 湖北省自然科学基金(2011CDB257)
关键词 支持向量机 数据挖掘 多核学习 WEB文本分类 SVM ~ data mining multiple kernel learning Web document classification
  • 相关文献

参考文献11

  • 1Vapink V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer Verlag, 1995.
  • 2Rakotomamonjy A, Bach F, Canu S. Simple MKL[ J]. Journal of Machine Leamin~ Research .2008 (9) :2491-2521.
  • 3Shawe-Taylor J, Cristianini N. Kernel Methodsfor Pattern A- nalysis [ M ]. Cambridge : Cambridge University Press,2004.
  • 4庞剑锋,卜东波,白硕.基于向量空间模型的文本自动分类系统的研究与实现[J].计算机应用研究,2001,18(9):23-26. 被引量:293
  • 5汪洪桥,孙富春,蔡艳宁,陈宁,丁林阁.多核学习方法[J].自动化学报,2010,36(8):1037-1050. 被引量:156
  • 6Lanckriet G R, Cristianini N, Bartlett P. Learning the kernel matrix with semidefinite programming[ J ]. Journal of Machine Learning Research,2004(5) :27-72.
  • 7Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learn- ing, conic duality, and the SMO algorithm [ C ]//Proceedings of the 21th International Conference on Machine Learning. New York:ACM Press,2004.
  • 8Sonnenburg S, Ratsch G, Schafer C. A general and efficient multiple kernel learning algorithm[ C ]//Proc of Neural Infor- mation Processing Systems. Cambridge : MIT Press ,2006.
  • 9Gai K, Chert G, Zhang C. Learning kernels with radiuses of minimum enclosing balls[ C]//Proc of 24th Annual Confer- ence on Neural Information Processing System. Cambridge: MIT Press ,2010.
  • 10刘勇,廖士中.基于支持向量机泛化误差界的多核学习方法[J].武汉大学学报(理学版),2012,58(2):149-156. 被引量:3

二级参考文献33

  • 1Zhou Yatong Zhang Taiyi Li Xiaohe.MULTI-SCALE GAUSSIAN PROCESSES MODEL[J].Journal of Electronics(China),2006,23(4):618-622. 被引量:4
  • 2黄萱青 吴立德.独立于语种的文本分类方法[M].,2000.37-43.
  • 3鲁松 白硕 等.文本中词语权重计算方法的改进[M].,2000.31-36.
  • 4卜东波.聚类/分类理论研究及其在大模型文本挖掘的应用:博士论文[M].,2000..
  • 5Cristianini N,Shawe-Taylor J.An Introduction to Support Vector Machines:And Other Kernel Based Methods[M].Cambridge:Cambridge University Press,2000.
  • 6Cristianini N,Shawe-Taylor J,Elisseeff A.On ker-nel-target alignment[C] //Advances in Neural Infor-mation Processing Systems14.Cambridge,MA:MIT Press,2002.
  • 7Chapelle O,Vapnik V,Bousquet O.Choosing multi-ple parameters for support vector machines[J].Ma-chine Learning,2002,46(1):131-159.
  • 8Sollich P.Bayesian methods for support vector ma-chines:Evidence and predictive class probabilities[J].Machine Learning,2002,46(1):21-52.
  • 9Bach F.Consistency of the group Lasso and multiple kernel learning[J].The Journal of Machine Learning Research,2008,9:1179-1225.
  • 10Ong C,Smola A,Williamson R.Learning the kernel with hyperkernels[J].Journal of Machine Learning Research,2005,6:1043-1071.

共引文献449

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部