摘要
图像修复作为图像处理的重要部分被应用于诸多领域,而小波域内的图像修复是指通过使用不完整的或者不精确的小波系数来恢复原始图像。总体变换模型(TV模型)广泛应用于图像的重构,并提供较高的恢复质量。提出了用一种无约束的TV规范、l2数据拟合模型来恢复图像。该模型可用交替方向法(ADM)求解。ADM每次迭代计算的消耗由两个傅里叶变换和两个小波变换决定,此变换可进行快速计算,其迭代部分的收敛性是稳定的。通过实验分析,可以得出ADM算法在小波图像修复问题中具有高效、稳定的特征。
Image inpainting is an important image processing task in many applications. Wavelet domain refers to the recovery of an image from incomplete or inaccurate wavelet coefficients. To reconstruct the image,Total Variation ( TV) models have been widely used in the literature and they produce high-quality reconstructed images. Consider an unconstrained TV-regularized, l2-data-fitting model to recov-er the image. The model is solved by the Alternating Direction Method ( ADM) . The per-iteration computational cost of ADM is domina-ted by two Fourier transforms and two wavelet transforms,all of which admit fast computation. Present numerical results to show the effi-ciency and stability of ADM for solving wavelet domain image inpainting problems.
出处
《计算机技术与发展》
2013年第10期235-238,共4页
Computer Technology and Development
基金
军内科研项目(E201103632)
关键词
图像修复
交替方向法
小波变换
总体变换模型
image inpainfing
alternating direction method
wavelet transform
total variation model