ANALYSIS OF BREAST CANCER PROFILES USING BAYESIAN NETWORK MODELING
ANALYSIS OF BREAST CANCER PROFILES USING BAYESIAN NETWORK MODELING
摘要
Breast cancer is the leading cause of cancer-related death for women in Tunisia and the prognosis of its metastasis remains a major problem for oncologists despite advances in treatment. In this work we use Bayesian networks to develop a decision support system that is based on the modeling of relationships between key signaling proteins and clinical and pathological characteristics of breast tumors and patients. Motivated by the lack of prior information on the parameters of the problem, we use the Implicit inference for the structure and parameter learning. A dataset of 84 Tunisian breast cancer patients was used and new prognosis factors were identified. The system predicts a metastasis risk for different patients by computing a score that is the joint probability of the Bayesian network using parameters estimated on the learning database. Based on the results of the developed system we identified that overexpression of ErbB2, ErbB3, bcl2 as well as of oestrogen and progesterone receptors associated with a low level of ErbB4 was the predominant profile associated with high risk of metastasis.
参考文献44
-
1D. M. Abd E1-Rehim, S. E. Pinder, C. E. Paish, J. A. Bell, R. S. Rampaul, R. W. Blarney, J. F. Robertson, R. I. Nicholson and I. O. Ellis, Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma, British J. Cancer 91 (2004) 1532-1542.
-
2S. Ahmed, S. Aloulou, M. Bibi, A. LaiMolsi', M. Nouira, L. Fatma, L. Kallel, O. Gharbi, S. Korbi, H. Khairiet and C. Kraiem, Breast cancer prognosis in nisian women: Analysis of a hospital series of 729 patients, Sante Publique 14 (2002) 231-241.
-
3H. Akaike, Information theory and extension of the maximum likelihood principle, in Proc. Second Int. Syrup. Information Theory, Budapest (1973), pp. 26281.
-
4M. Aubele, G. Auer, A. K. Walch, A. Munro, M. J. Atkinson, H. Braselmann, T. Fornander and J. M. Bartlett, PTK (protein tyrosine kinase)-6 and HER2 and 4, but not HER1 and 3 predict long-term survival in breast carcinomas, British J. Cancer 5 (2007) 801 807.
-
5V. J. Bardou, G. Arpino, R. M. Elledge, C. K. Osborne and G. M. Clark, Proges- terone receptor status significantly improves outcome prediction over estrogen recep- tor status alone for adjuvant endocrine therapy in two large breast cancer databases, J. Clin. Oncol. 21(10) (2003) 1973-1979.
-
6H. Ben Hassen, A. Masmoudi and A. Rebai, Causal inference in biomolecular path- ways using a Bayesian network approach and an implicit method, J. Theor. Biol. 4 (2008) 717 724.
-
7H. Ben Hassen, A. Masmoudi and A. Rebai, Inference in signal transduction pathways using EM algorithm and an implicit algorithm: Incomplete data case, J. Comput. Biol. 16 (2009) 1227-1240.
-
8I. Biche, P. Onody, S. Tozlu, K. Driouch, M. Vidaud and R. Lidereau, Prognostic value of ERBB family mRNA expression in breast carcinomas, Int. J. Cancer 106 (2003) 758 765.
-
9L. Bouchaala, A. Masmoudi, F. Gargouri and A. Rebai, Improving algorithms for structure learning in Bayesian Networks using a new implicit score, Expert Syst. Appl. 37(7) (2010) 5470-5475.
-
10J. P. Choi, T. H. Han and R. W. Park, A hybrid Bayesian network model for pre- dicting breast cancer prognosis, J. Korean Soe. Med. Inform. 15 (2009) 49-57.
-
1周云辉,王娇.数据挖掘技术在医疗领域中的应用研究[J].机械工程与自动化,2013(4):14-15. 被引量:5
-
2你知道吗[J].健康之家,2012(1):14-14.
-
3Wan-min QIANG Feng-qi DONG Ling YAN Yu-hong CHEN Lei TANG Yong-qin JIANG.Rehabilitation Effect of Systematic Exercise on Breast Cancer Patients after Adjuvant Chemotherapy[J].Clinical oncology and cancer researeh,2010,7(4):259-264.
-
4A New Nanomaterial Offers Hope for Better Detection and Treatment of Breast Cancer[J].Chinese Journal of Biomedical Engineering(English Edition),2013,22(4):177-177.
-
5Brianne A. BEISNER,Jian JIN,Hsieh FUSHING,Brenda MCCOWAN.Detection of social group instability among captive rhesus macaques using joint network modeling[J].Current Zoology,2015,61(1):70-84. 被引量:6
-
6Francisco Javier Luna Rosas,Julio Cesar Martinez Romo,Ricardo Mendoza Gonzalez,Valentin Lopez Rivas,Miguel Mora Gonzalez,Gricelda Medina Veloz.A Neuro-Fuzzy Approach for Automatic Detection of Breast Cancer Based on Raman Spectroscopy[J].通讯和计算机(中英文版),2014,11(2):158-167.
-
7MIZheng-kun,HUANGHui-qing,等.Modeling Techniques for IN/Internet Interworking[J].The Journal of China Universities of Posts and Telecommunications,2000,7(1):1-6. 被引量:2
-
8刘锦涛.运用BAYESIAN分析预测变压器故障[J].湖北电力技术,1993(3):49-56.
-
9高海兵,高亮,周驰,喻道远.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574. 被引量:93
-
10Breast Cancer a Grim Threat[J].China Today,2010,59(12):8-8.