期刊文献+

FRACTIONAL TIME SCALE IN CALCIUM ION CHANNELS MODEL

FRACTIONAL TIME SCALE IN CALCIUM ION CHANNELS MODEL
原文传递
导出
摘要 We propose a fractional time scale to model the calcium ion channels model which is retarded with injection of calcium-chelator Ethylene Glycol Tetraacetic Acid (EGTA). By using this nonlinear time scale and Modified Riemann-Liouville fractional derivative, we convert the integer-order calcium ion channels model into fractional-order differential equations. We also analyze the range of order of fractional-order differentiM equations to ensure the equilibria of it are asymptotically stable. The simulation results are given to demonstrate the solutions of this model coincide with the real experiment data.
作者 SHI-LONG GAO
出处 《International Journal of Biomathematics》 2013年第4期61-71,共11页 生物数学学报(英文版)
基金 Acknowledgments The research of this paper is supported by National Natural Science Foundation of China (Grant No. 11171238) and a project supported by Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 13ZA0109).
关键词 Fractional-order differential equations time scale calcium ion channels asymptotically stable. 分数阶导数 钙离子通道 通道模型 时间尺度 分数阶微分方程 EGTA 钙螯合剂 模型转化
  • 相关文献

参考文献20

  • 1E. Ahmed and A. S. Elgazzar, On fractional-order differential equations model for nonlocal epidemics, Physica A 379 (2007) 60614.
  • 2T. J. Anastasio, The fractional-order dynamics of brainstem vestibulo-oculomotor neurons, Biol. Cybern. 72 (1994) 69-79.
  • 3W. H. Deng, Generating 3-D scroll grid attractors of fractionM differential systems via stair function, Int. J. Bifurcation Chaos 17 (2007) 3965-3983.
  • 4W. H. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations, J. Comput. Appl. Math. 206 (2007) 174-188.
  • 5K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam. 29 (2002) 3-22.
  • 6K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms 36 (2004) 31-52.
  • 7R. Eckert and D. Tillotson, Calcium-mediated inactivation of the calcium conduc- tance in caesium-loaded giant neurons of Aplysia californica, J. Physiol. 314 (1981) 265-260.
  • 8A. M. A. E1-Sayeda, A. E. M. El-Mesiryb and H. A. A. El-Saka, On the fractional- order logistic equation, Appl. Math. Lett. 20 (2007) 817-823.
  • 9C. P. Fall, E. S. Marland, J. M. Wagner and J. J. Tyson, Computational Cell Biology (Soriner-Verlag, New York, 2002).
  • 10J. E. Ferrell and W. Xiong Jr., Bistability in cell signaling: How to make continu- ous processes discontinuous, and reversible processes irreversible, Chaos 11 (2001) 227-236.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部