摘要
Mycielski引入了对于图G的一类新的变换图μ(G),称为G的Mycielskian.这类变换图的推广是广义Mycielskian图μm(G),m是正整数.如果每个最小点割(最小边割)孤立G的一个点,则称图G是超连通的或超-κ(超边连通的或超-λ).证明结果显示:设G是连通图且︱V(G)︱≥3条件下,μm(G)是超-κ的充要条件是δ(G)<(m+1)κ(G);μm(G)是超-λ的充要条件是G■K2,即G不是一条边.
Abstract: Mycielski introduced Ix(G) , a graph transformation for graph G, or the MycleisKlan ot t~. generalization of this transformation is the generalized MycielskianIx,(G) , where is a positive integer. A graph is super-connected or simply super - s:( resp. super edge connected or super-A), if every minimum vertex cut (resp. minimum edge cut) isolates a vertex of G. In this paper, it is shown that for a connected graph G with IV(G) ≥ 3,μm(G) is super-K if and only ifS(G) 〈 (m + 1)s:(G) , andtμm(G) is super-A if and only if G K2, that is, G is not an edge.
出处
《厦门理工学院学报》
2013年第3期64-67,共4页
Journal of Xiamen University of Technology
基金
国家自然科学基金项目(11301440)
厦门理工学院高层次人才引进项目(YKJ12030R)