期刊文献+

基于混合加速粒子群算法的捕食者-食饵模型参数估计 被引量:3

Parameters Estimation for Predator-Prey Model Based on the Algorithm of Hybrid Acceleration Particle Swarm Optimization
原文传递
导出
摘要 首先应用四阶紧致差分格式,对捕食者-食饵模型的参数估计转化为相应的优化问题,然后将加速粒子群算法与Nelder-Mead算法相结合,提出混合加速粒子群算法,用来优化模型参数.数值实验中,借助四阶龙格-库塔算法对模型进行仿真计算,与观测值比较表明该算法是可行的. The parameter estimation problem of prey-predator model was transformed into the corresponding optimization problem by the use of fourth-order compact difference scheme in the paper.The hybrid algorithm of acceleration particle swarm optimization and Nelder-Mead algorithm was proposed to optimize the parameters of model.In the numerical experiments,Fourth-order Runge-Kutta algorithm was used to compute the model,and comparing the simulation results with observed values.The results of comparing show that the algorithm is feasible.
出处 《生物数学学报》 2013年第3期553-557,共5页 Journal of Biomathematics
基金 国家自然科学基金(11061031 10871160) 池州学院自然科学研究重点项目(2012ZRZ010)
关键词 捕食者-食饵模型 参数估计 混合加速粒子群算法 Predator-prey model Parameter estimation Hybrid acceleration particle swarm optimization
  • 相关文献

参考文献11

二级参考文献68

  • 1王福林,王吉权,吴昌友,吴秋峰.实数遗传算法的改进研究[J].生物数学学报,2006,21(1):153-158. 被引量:30
  • 2向长城,黄席樾,杨祖元,杨欣.小生境粒子群优化算法[J].计算机工程与应用,2007,43(15):41-43. 被引量:24
  • 3陈务深,戴沨,甘泉.确定高精度参数问题的评注[J].数学的实践与认识,2007,37(14):90-94. 被引量:1
  • 4张平文,李铁军.数值分析[M].北京:北京大学出版社,2007:209-225.
  • 5Parsopoulos K E,Vrahatis M N.Initializing the particle swarm optimizer using the nonlinear simplex method[M]//Grmela A,Mastoraltis N E.Advances in Intelligent Systems,Fuzzy Systems,Evolutionary Computation.[S.l.]: WSEAS Press,2000:216-221.
  • 6Fan S K S,Zahara E.A hybrid simplex search and particle swarm optimization for unconstrained optimization[J].European Journal of Operational Research, 2007,108 (2) : 527-548.
  • 7Wang F,Qiu Y H.Empirical study of hybrid Particle Swarm Optimizers with the simplex method operator[C]//Proceedings of the 5th International Conference on Intelligent Systems Design and Ap plication, Wroclaw, Poland, 2005 : 308-313.
  • 8Wang F,Qiu Y H.Muhimodal function optimizing by a new hybrid nonlinear simplex search and particle swarm algorithm[C]//Proceedings of the 16th European Conference on Machine Learning,Porto, Portugal, 2005 : 759-766.
  • 9Carlisle A,Dozier G.An off-the-shelf PSO[C]//Proceedings of the Workshop on Particle Swarm Optimization,Indianapolis,2001:1-6.
  • 10Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization[C]//Lecture Notes in Computer Science 1447:Evolutionary Programming Ⅶ, 1998 : 591-600.

共引文献77

同被引文献23

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部