期刊文献+

基于co-ICIB联合聚类的舆情监测系统设计 被引量:1

Design of public sentiment monitoring system based on co-ICIB co-clustering
下载PDF
导出
摘要 基于co-ICIB联合聚类的舆情监测系统的设计为舆情信息库,它通过联合聚类等数据挖掘算法可以快速及时地发现新的舆论热点.当舆论热点被确认,即在互联网上真正成为一个备受关注的话题时,文本分类算法可以将同一话题内的信息归类,有助于跟踪舆情的发展趋势.该舆情监测系统可为舆情监管部门提供原始舆情资料、数据性图表和建议性分析. A public sentiment monitoring system is designed, based on coICIB coclustering. The system col lects the information from micro blogs and blogs, creates public sentiment database and analyzes the hot points and development trend of public sentiment by such data mining algorithms as coclustering. Once hot points are confirmed, which means they become truly concentrated topics in Internet, text categorization algorithms could group the information of the same topic into one category and help the track trend of public sentiment. The results of the system could provide the original public sentiment data, data chart and suggestion analysis for a public sentiment supervision department.
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2013年第5期592-595,共4页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(61202286) 国家社会科学基金资助项目(11CYY019) 河南省社科联项目(SKL-2013-486) 河南理工大学青年骨干教师资助项目
关键词 自媒体 舆情 联合聚类 We Media public sentiment co-clustering
  • 相关文献

参考文献8

  • 1舆情[N/OL].http://baike.baidu.com/view/737646.htm.
  • 2LIU YONGLI, OUYANG YUANXIN, SHENG HAO, et al . An Incremental Algorithm for Clustering Search Results [ C //Proceedings of The Fourth International Conference On Signal-Image Technology & Internet- Based Systems. 2008 : 112-117.
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1077
  • 4NOAM SLONIM, NAFTALI TISHBY. Document clus- tering using word clusters via the information bottle- neck method [ C ]//Proceedings of the 23rd ACM SI- GIR. New York: ACM, 2000:208-215.
  • 5JACOB GOLDBERGER, HAYIT GREENSPAN, SHI- RI GORDON. Unsupervised Image Clustering Using the Information Bottleneck Method [ C ]//Proceedings of the 24th DAGM Symposium on Pattern Recognition. London : Springer- Yerlag, 2002 : 158-165.
  • 6KHALED M,HAMMOUDA, MOHAMED S, et al. Ef- ficient Phrase-Based Document Indexing for Web Doc- ument Clustering [ J]. IEEE transactions on knowl- edge and data engineering, 2004, 16 (10) : 1279- 1296.
  • 7SAHOO N, CALLAN J, KRISHNAN R, et al . Incre- mental hierarchical clustering of text documents[ C ]// In the Proceedings of the 15th ACM international con- ference on Information and knowledge management. New York : ACM, 2006:357-366.
  • 8LIU YONGLI, OUYANG YUANXIN,XIONG ZHANG. Incremental Clustering using Information Bottleneck Theory[ J]. International Journal of Pattern Recogni- tion and Artificial Intelligence, 2011, 25 (5) : 695- 712.

二级参考文献1

共引文献1076

同被引文献16

  • 1LIU Yongli,OUYANG Yuanxin,ZHANG Xiong.Incremental Clustering using Information Bottleneck Theory[J].International Journal of Pattern Recognition and Artificial Intelligence,2011,25(5):695-712.
  • 2ROHINI U,VASUDEVA Varma.A Novel Approach for Re-Ranking of Search Results Using Collaborative Filtering[C]//International Conference on Computing:Theory and Applications,2007:491-496.
  • 3DELEL Rhouma,LOTFI Benromdhane.An efficient algorithm for community mining with overlap in social networks[J].Expert Systems with Applications,2014,41(9):4309-4321.
  • 4WU Zhenyu,ZOU Ming.An incremental community detection method for social tagging systems using locality-sensitive hashing,Neural Networks,2014,58:14-28.
  • 5SHI Chuan,CAI Yanan,FU Di,et al.A link clustering based overlapping community detection algorithm[J].Data&Knowledge Engineering,2013,87:394-404.
  • 6QI Xingqin,TANG Wenliang,WU Yezhou,et al.Optimal local community detection in social networks based on density drop of subgraphs[J].Pattern Recognition Letters,2014,36:46-53.
  • 7MARIC V.Nascimento.Community detection in networks via a spectral heuristic based on the clustering coefficient[J].Discrete Applied Mathematics,2013.
  • 8ZHAO Peixin,ZHANG Cunquan.A new clustering method and its application in social networks[J].Pattern Recognition Letters,2011,32:2109-2118.
  • 9TISHBY N,PEREIRA F C,BIALEK W.The information bottleneck method[C]//37th Ann.Allerton Conf.Communication,Control,and Computing,1999:368-377.
  • 10NOAM S,NAFTALI T.Document clustering using word clusters via the information bottleneck method[C]//23rd Ann.Int.ACM SIGIR Conf.Research and Development in Information Retrieval,Athens,Greece,2000:208-215.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部