摘要
运用凸集分离定理对广义锥次类凸集值映射建立了一种择一性定理 .引入向量优化弱Benson真有效元的概念 ,对带约束的非凸向量集值优化问题建立了在弱Benson真有效意义下有效元应满足La grange乘子型的必要及充分条件 ,并用这一结果建立了多目标主从非凸向量集值优化在弱Benson真有效意义下最优解的Lagrange乘子型充要条件 .
A theorem of the alternative for the generalized subconvexlike set valued maps is established using the separation theorem of convex sets in a Banach spaces, the concept of weak Benson proper efficient elements for a vector optimization problem is introduced, and the optimality necessary and sufficient Lagrange conditions for a vector set valued map constrained optimization problem with the weak Benson proper efficiency is developed, with which the optimality Lagrange conditions for a nonconvex vector top base constrained optimization of set valued maps with the Benson proper efficiency are obtained.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2000年第6期752-755,共4页
Journal of Xidian University
基金
陕西省自然科学基金资助项目!(99SL0 2 )
关键词
非凸多目标
最优性条件
主从向量集值优化
vector optimization of set valued maps
Benson proper efficiency
optimality Lagrange conditions
vector top base optimization of set valued maps